lines
Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1375 Accepted Submission(s): 571
Problem Description
John has several lines. The lines are covered on the X axis. Let A is a point which is covered by the most lines. John wants to know how many lines cover A.
Input
The first line contains a single integer T(1≤T≤100)(the data for N>100 less than 11 cases),indicating the number of test cases.
Each test case begins with an integer N(1≤N≤105),indicating the number of lines.
Next N lines contains two integers Xi and Yi(1≤Xi≤Yi≤109),describing a line.
Each test case begins with an integer N(1≤N≤105),indicating the number of lines.
Next N lines contains two integers Xi and Yi(1≤Xi≤Yi≤109),describing a line.
Output
For each case, output an integer means how many lines cover A.
Sample Input
2
5
1 2
2 2
2 4
3 4
5 1000
5
1 1
2 2
3 3
4 4
5 5
Sample Output
3
1
Source
题意:给你n个区间覆盖x轴,问哪个点被覆盖的线段数多,是几条。
由于数据范围太大,所以离散化……
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; #define maxn 500008 struct node { int op,num; }P[maxn]; int cmp(node a, node b) { return a.op < b.op; } int main() { int t, n, x, y; scanf("%d", &t); while(t--) { scanf("%d", &n); int k = 0, j; for(int i = 0; i < n; i++) { scanf("%d%d", &x, &y); P[k].op = x; P[k++].num = 1; P[k].op = y+1; P[k++].num = -1; } sort(P, P+k, cmp); int cnt = 0, Max = 0; for(int i = 0; i < k; ) { j = i; while(P[j].op == P[i].op && j < k) { cnt += P[j].num; j++; } i = j; Max = max(Max, cnt); } printf("%d\n", Max); } return 0; }
让未来到来 让过去过去