Scx117
只一眼,便辽阔了时间。
随笔 - 114,  文章 - 0,  评论 - 2,  阅读 - 21320

题意:一共有n张牌,每张牌有三个属性ai,bi,ci。问在属性上限为A,B,C的所有牌中有多少张牌满足至少有两个属性可以完全压制(严格大于)那n张牌?

n<=50W。

 

标程:

复制代码
 1 #include<cstdio>
 2 #include<algorithm>
 3 #include<cstring>
 4 using namespace std;
 5 typedef long long ll;
 6 int read()
 7 {
 8    int x=0,f=1;char ch=getchar();
 9    while (ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=getchar();}
10    while (ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
11    return x*f;
12 }
13 const int N=500005;
14 int n,A,B,C,Mx_a[N],Mx_b[N],ma,mb;
15 ll ans,sum_a[N],sum_b[N];
16 struct node{int a,b,c;}p[N];
17 bool operator < (const node &A,const node &B){return A.c>B.c;}
18 int main()
19 {
20     n=read();A=read();B=read();C=read();
21     for (int i=1;i<=n;i++) p[i].a=read(),p[i].b=read(),p[i].c=read();
22     sort(p+1,p+n+1);
23     for (int i=1;i<=n;i++) Mx_b[p[i].a]=max(Mx_b[p[i].a],p[i].b);
24     for (int i=1;i<=n;i++) Mx_a[p[i].b]=max(Mx_a[p[i].b],p[i].a);
25     for (int i=B-1;i>=1;i--) Mx_a[i]=max(Mx_a[i+1],Mx_a[i]);
26     for (int i=A-1;i>=1;i--) Mx_b[i]=max(Mx_b[i+1],Mx_b[i]);
27     for (int i=1;i<=A;i++) sum_a[i]=sum_a[i-1]+B-Mx_b[i];
28     for (int i=1;i<=B;i++) sum_b[i]=sum_b[i-1]+A-Mx_a[i];
29     for (int i=C,head=1;i>=1;i--)
30     {
31         while (head<=n&&p[head].c==i) ma=max(ma,p[head].a),mb=max(mb,p[head].b),head++;
32         if (Mx_b[ma+1]<mb+1) ans+=(ll)(A-ma)*(B-mb);
33         else ans+=sum_a[A]-sum_a[ma]-sum_b[mb];
34     }
35     printf("%lld\n",ans);
36    return 0;
37 }
复制代码

 

易错点:注意前缀和统计时的循环下标勿混。

 

题解:前缀和+数形结合

考场上我写了个n^2,在数据随机时nlogn居然跑过去了。。。

n^2暴力:按照ci从大到小排序,枚举选取的C,那么对于ci<C的点,只要ai,bi其一被压制即可。对于ci>=C的点,两个都得被压制,维护一个A,B取值的max转移即可,并且单调。再按照B进行排序,用类似的方法可以计算出A的取值范围。

正解:同样按照C从大到小排序,对于ci>=C的max限制也一样。而对于ci<C的点,我们将关于A,B的函数图像画出来,发现是一个阶梯形的结构。Mx_a[i]表示i取i~B时ai的最大值,Mx_b[i]同理。如果不考虑前面的max限制,答案就是A*B-下阶梯的面积。

如果有限制,就相当于是一条竖线一条横线即一个矩形的限制。如果矩形和阶梯有交,那么取外阶梯的面积-前段排除面积-后段排除面积即可。用前缀和预处理。反之,就是直接取一个矩形的面积。时间复杂度O(nlogn)->排序。

posted on   Scx117  阅读(109)  评论(0编辑  收藏  举报
编辑推荐:
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
阅读排行:
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 《HelloGitHub》第 106 期
· 数据库服务器 SQL Server 版本升级公告
· 深入理解Mybatis分库分表执行原理
· 使用 Dify + LLM 构建精确任务处理应用

< 2025年1月 >
29 30 31 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
2 3 4 5 6 7 8
点击右上角即可分享
微信分享提示