常见插值算法--拉格朗日插值、三次卷积插值、三次样条插值、兰克索斯插值

写在前面

本文简单介绍了几种常见的插值算法并附带了相应的python代码,本文公式使用latex编写,如有错误欢迎评论指出,如果谁知道如何修改latex字号也欢迎留言

 

关于一维、二维和多维插值

三次卷积插值、拉格朗日两点插值(线性插值)、兰克索斯插值在二维插值时改变x和y方向的计算顺序不影响最终结果,这三个也是图像缩放插值时常用的插值算法,而其他插值在改变计算顺序时会产生明显差异,多维的情况笔者没有尝试,读者可以自行尝试或推导

 

最近邻插值法(Nearest Neighbour Interpolation)

在待求像素的四邻像素中,将距离待求像素最近的像素值赋给待求像素

$p_{11}$    $p_{12}$

    $p$

$p_{21}$    $p_{22}$

python代码

1 def NN_interpolation(srcImg, dstH, dstW):
2     scrH, scrW, _ = srcImg.shape
3     dstImg = np.zeros((dstH, dstW, 3), dtype=np.uint8)
4     for i in range(dstH - 1):
5         for j in range(dstW - 1):
6             scrX = round(i * (scrH / dstH))
7             scrY = round(j * (scrW / dstW))
8             dstImg[i, j] = srcImg[scrX, scrY]
9     return dstImg

 

拉格朗日插值(Lagrange Interpolation)

$拉格朗日插值法需要找到k个p_i(x)函数,使得每个函数分别在在x_i处取值为1,其余点取值为0,则y_ip_i(x)可以保证在x_i处取值为y_i,在其余点取值为0,因此L_k(x)能恰好经过所有点,这样的多项式被称为拉格朗日插值多项式,记为$

$L_k(x)=\sum_{i=1}^ky_ip_i(x)$

$p_i(x)=\prod_{j \neq i}^{1 \leq j \leq k}\frac{x-x_j}{x_i-x_j}$

$以四点即三次图像插值为例,因为横坐标间隔为1,则设四个点横坐标为-1、0、1和2,可得p_1(x)、p_2(x)、p_3(x)和p_4(x)$

 $假设y_1、y_2、y_3和y_4分别为1、2、-1、4,则可得拉格朗日函数如下图所示,待插值点横坐标范围为[0,1]$

 

在K=2时

在k=2时,也被称为线性插值

通用公式

$p_1=\frac{x-x_2}{x_1-x_2}$

$p_2=\frac{x-x_1}{x_2-x_1}$

\begin{align}
L_2x &= p_1y_1+p_2y_2 \nonumber \\
&= \frac{x-x_2}{x_1-x_2}y_1 + \frac{x-x_1}{x_2-x_1}y_2 \nonumber
\end{align}

图像插值

像素分布如图所示

$p_{11}$    $p_{12}$

    $p$

$p_{21}$    $p_{22}$

$即当x_{i+1}=x_i+1时,设p与p_{11}的横纵坐标差分别为dx和dy$

\begin{align}
L_2x &= \frac{x-x_2}{x_1-x_2}y_1 + \frac{x-x_1}{x_2-x_1}y_2 \nonumber \\
&= (x_2-x)y_1+(x-x_1)y_2 \nonumber \\
&= (1-dx)y_1+dxy_2 \nonumber \\
&= (y_2-y_1)dx+y_1 \nonumber
\end{align}

$L_2'x=y_2-y_1$

在K=3时

通用公式

$p_1=\frac{x-x_2}{x_1-x_2}\frac{x-x_3}{x_1-x_3}$

$p_2=\frac{x-x_1}{x_2-x_1}\frac{x-x_3}{x_2-x_3}$

$p_3=\frac{x-x_1}{x_3-x_1}\frac{x-x_2}{x_3-x_2}$

\begin{align}
L_3x &= p_1y_1+p_2y_2+p_3y_3 \nonumber \\
&= \frac{x-x_2}{x_1-x_2}\frac{x-x_3}{x_1-x_3}y_1+\frac{x-x_1}{x_2-x_1}\frac{x-x_3}{x_2-x_3}y_2+\frac{x-x_1}{x_3-x_1}\frac{x-x_2}{x_3-x_2}y_3 \nonumber
\end{align}

图像插值

像素分布如图所示

$p_{11}$    $p_{12}$    $p_{13}$

     

$p_{21}$    $p_{22}$    $p_{23}$

           $p$

$p_{31}$    $p_{32}$    $p_{33}$

$即当x_{i+1}=x_i+1时,设p与p_{11}的横纵坐标差分别为dx和dy$

\begin{align}
L_3x &= \frac{x-x_2}{x_1-x_2}\frac{x-x_3}{x_1-x_3}y_1 + \frac{x-x_1}{x_2-x_1}\frac{x-x_3}{x_2-x_3}y_2 + \frac{x-x_1}{x_3-x_1}\frac{x-x_2}{x_3-x_2}y_3 \nonumber \\
&= \frac{-dx(1-dx)}{(-1)\cdot(-2)}y_1 + \frac{-(1+dx)(1-dx)}{1\cdot(-1)}y_2 + \frac{(1+dx)dx}{2\cdot 1}y_3 \nonumber \\
&= (\frac{1}{2}d^2x-\frac{1}{2}dx)y_1 - (d^2x-1)y_2 + (\frac{1}{2}d^2x+\frac{1}{2}dx)y_3 \nonumber \\
&= d^2x(\frac{1}{2}y_1-y_2+\frac{1}{2}y_3)+dx(-\frac{1}{2}y_1+\frac{1}{2}y_3)+y_2 \nonumber
\end{align}

$L_3'x=dx(y_1-2y_2+y_3)+(\frac{1}{2}y_3-\frac{1}{2}y_1)$

在K=4时

通用公式

$p_1=\frac{x-x_2}{x_1-x_2}\frac{x-x_3}{x_1-x_3}\frac{x-x_4}{x_1-x_4}$

$p_2=\frac{x-x_1}{x_2-x_1}\frac{x-x_3}{x_2-x_3}\frac{x-x_4}{x_2-x_4}$

$p_3=\frac{x-x_1}{x_3-x_1}\frac{x-x_2}{x_3-x_2}\frac{x-x_4}{x_3-x_4}$

$p_4=\frac{x-x_1}{x_4-x_1}\frac{x-x_2}{x_4-x_2}\frac{x-x_3}{x_4-x_3}$

\begin{align}
L_4x &= p_1y_1+p_2y_2+p_3y_3+p_4y_4 \nonumber \\
&= \frac{x-x_2}{x_1-x_2}\frac{x-x_3}{x_1-x_3}\frac{x-x_4}{x_1-x_4}y_1 + \frac{x-x_1}{x_2-x_1}\frac{x-x_3}{x_2-x_3}\frac{x-x_4}{x_2-x_4}y_2 + \frac{x-x_1}{x_3-x_1}\frac{x-x_2}{x_3-x_2}\frac{x-x_4}{x_3-x_4}y_3 + \frac{x-x_1}{x_4-x_1}\frac{x-x_2}{x_4-x_2}\frac{x-x_3}{x_4-x_3}y_4 \nonumber
\end{align}

图像插值

$p_{11}$    $p_{12}$    $p_{13}$    $p_{14}$

 

$p_{21}$    $p_{22}$    $p_{23}$    $p_{24}$

           $p$

$p_{31}$    $p_{32}$    $p_{33}$    $p_{34}$

 

$p_{41}$    $p_{42}$    $p_{43}$    $p_{44}$

$即当x_{i+1}=x_i+1时,设p与p_{11}的横纵坐标差分别为dx和dy$

\begin{align}
L_4x &= \frac{x-x_2}{x_1-x_2}\frac{x-x_3}{x_1-x_3}\frac{x-x_4}{x_1-x_4}y_1
+ \frac{x-x_1}{x_2-x_1}\frac{x-x_3}{x_2-x_3}\frac{x-x_4}{x_2-x_4}y_2
+ \frac{x-x_1}{x_3-x_1}\frac{x-x_2}{x_3-x_2}\frac{x-x_4}{x_3-x_4}y_3
+ \frac{x-x_1}{x_4-x_1}\frac{x-x_2}{x_4-x_2}\frac{x-x_3}{x_4-x_3}y_4 \nonumber \\
&= \frac{dx[-(1-dx)][-(2-dx)]}{(-1)\cdot(-2)\cdot(-3)}y_1
+ \frac{(1+dx)[-(1-dx)][-(2-dx)]}{1\cdot(-1)\cdot(-2)}y_2
+ \frac{(1+dx)dx[-(2-dx)]}{2\cdot 1\cdot(-1)}y_3
+ \frac{(1+dx)dx[-(1-dx)]}{3\cdot 2\cdot 1}y_4 \nonumber \\
&= \frac{d^3x-3d^2x+2dx}{-6}y1 + \frac{d^3x-2d^2x-dx+2}{2}y_2 + \frac{d^3x-d^2x-2dx}{-2}y_3 + \frac{d^3x-dx}{6}y_4 \nonumber \\
&= d^3x(-\frac{1}{6}y_1+\frac{1}{2}y_2-\frac{1}{2}y_3+\frac{1}{6}y_4)+d^2x(\frac{1}{2}y_1-y_2+\frac{1}{2}y_3)+dx(-\frac{1}{3}y_1-\frac{1}{2}y_2+y_3-\frac{1}{6}y_4)+y_2 \nonumber
\end{align}

\begin{align}
L_4'x &= d^2x(-\frac{1}{2}y_1+\frac{3}{2}y_2-\frac{3}{2}y_3+\frac{1}{2}y_4)+dx(y_1-2y_2+y_3)+(-\frac{1}{3}y_1-\frac{1}{2}y_2+y_3-\frac{1}{6}y_4) \nonumber \\
&= -[\frac{1}{2}d^2x(y_1-3y_2+3y_3-y_4)-dx(y_1-2y_2+y_3)+\frac{1}{6}(2y_1+3y_2-6y_3+y_4)] \nonumber
\end{align}

python代码

插值核计算的时候乘法和加减法计算的顺序不同可能会导致结果存在细微的差异,读者可以自行研究一下

  1 class BiLagrangeInterpolation:
  2     @staticmethod
  3     def LagrangeInterpolation2(x, y1, y2):
  4         f1 = 1 - x
  5         f2 = x
  6         result = y1 * f1 + y2 * f2
  7         return result
  8 
  9     @staticmethod
 10     def LagrangeInterpolation3(x, y1, y2, y3):
 11         f1 = (x ** 2 - x) / 2.0
 12         f2 = 1 - x ** 2
 13         f3 = (x ** 2 + x) / 2.0
 14         result = y1 * f1 + y2 * f2 + y3 * f3
 15         return result
 16 
 17     @staticmethod
 18     def LagrangeInterpolation4(x, y1, y2, y3, y4):
 19         f1 = - (x ** 3 - 3 * x ** 2 + 2 * x) / 6.0
 20         f2 = (x ** 3 - 2 * x ** 2 - x + 2) / 2.0
 21         f3 = - (x ** 3 - x ** 2 - 2 * x) / 2.0
 22         f4 = (x ** 3 - x) / 6.0
 23         result = y1 * f1 + y2 * f2 + y3 * f3 + y4 * f4
 24         return result
 25 
 26     def biLag2_2(self, srcImg, dstH, dstW):
 27         dstH, dstW = int(dstH), int(dstW)
 28         srcH, srcW, _ = srcImg.shape
 29         srcImg = np.pad(srcImg, ((1, 1), (1, 1), (0, 0)), 'edge')
 30         dstImg = np.zeros((dstH, dstW, 3), dtype=np.uint8)
 31         for dstY in range(dstH):
 32             for dstX in range(dstW):
 33                 for channel in [0, 1, 2]:
 34                     # p11   p12
 35                     #     p
 36                     # p21   p22
 37                     # 储存为 p(y, x)
 38                     p = [dstY * srcH / dstH, dstX * srcW / dstW]
 39                     p11 = [math.floor(p[0]), math.floor(p[1])]
 40                     p12 = [p11[0], p11[1] + 1]
 41 
 42                     p21 = [p11[0] + 1, p11[1]]
 43                     p22 = [p21[0], p12[1]]
 44 
 45                     diff_y, diff_x = p[0] - p11[0], p[1] - p11[1]
 46                     r1 = self.LagrangeInterpolation2(diff_x, srcImg[p11[0], p11[1], channel], srcImg[p12[0], p12[1], channel])
 47                     r2 = self.LagrangeInterpolation2(diff_x, srcImg[p21[0], p21[1], channel], srcImg[p22[0], p22[1], channel])
 48 
 49                     c = self.LagrangeInterpolation2(diff_y, r1, r2)
 50 
 51                     dstImg[dstY, dstX, channel] = np.clip(c, 0, 255)
 52         return dstImg
 53 
 54     def biLag3_3(self, srcImg, dstH, dstW):
 55         dstH, dstW = int(dstH), int(dstW)
 56         srcH, srcW, _ = srcImg.shape
 57         srcImg = np.pad(srcImg, ((1, 1), (1, 1), (0, 0)), 'edge')
 58         dstImg = np.zeros((dstH, dstW, 3), dtype=np.uint8)
 59         for dstY in range(dstH):
 60             for dstX in range(dstW):
 61                 for channel in [0, 1, 2]:
 62                     # p11   p12   p13
 63                     #
 64                     # p21   p22   p23
 65                     #           p
 66                     # p31   p32   p33
 67                     # 储存为 p(y, x)
 68                     p = [dstY * srcH / dstH, dstX * srcW / dstW]
 69                     p22 = [math.floor(p[0]), math.floor(p[1])]
 70                     p21 = [p22[0], p22[1] - 1]
 71                     p23 = [p22[0], p22[1] + 1]
 72 
 73                     p11 = [p21[0] - 1, p21[1]]
 74                     p12 = [p11[0], p22[1]]
 75                     p13 = [p11[0], p23[1]]
 76 
 77                     p31 = [p21[0] + 1, p21[1]]
 78                     p32 = [p31[0], p22[1]]
 79                     p33 = [p31[0], p23[1]]
 80 
 81                     diff_y, diff_x = p[0] - p22[0], p[1] - p22[1]
 82                     r1 = self.LagrangeInterpolation3(diff_x, srcImg[p11[0], p11[1], channel], srcImg[p12[0], p12[1], channel], srcImg[p13[0], p13[1], channel])
 83                     r2 = self.LagrangeInterpolation3(diff_x, srcImg[p21[0], p21[1], channel], srcImg[p22[0], p22[1], channel], srcImg[p23[0], p23[1], channel])
 84                     r3 = self.LagrangeInterpolation3(diff_x, srcImg[p31[0], p31[1], channel], srcImg[p32[0], p32[1], channel], srcImg[p33[0], p33[1], channel])
 85 
 86                     c = self.LagrangeInterpolation3(diff_y, r1, r2, r3)
 87 
 88                     dstImg[dstY, dstX, channel] = np.clip(c, 0, 255)
 89         return dstImg
 90 
 91     def biLag4_4(self, srcImg, dstH, dstW):
 92         dstH, dstW = int(dstH), int(dstW)
 93         srcH, srcW, _ = srcImg.shape
 94         srcImg = np.pad(srcImg, ((1, 2), (1, 2), (0, 0)), 'edge')
 95         dstImg = np.zeros((dstH, dstW, 3), dtype=np.uint8)
 96         for dstY in range(dstH):
 97             for dstX in range(dstW):
 98                 for channel in [0, 1, 2]:
 99                     # p11   p12   p13   p14
100                     #
101                     # p21   p22   p23   p24
102                     #           p
103                     # p31   p32   p33   p34
104                     #
105                     # p41   p42   p43   p44
106                     # 储存为 p(y, x)
107                     p = [dstY * srcH / dstH, dstX * srcW / dstW]
108                     p22 = [math.floor(p[0]), math.floor(p[1])]
109                     p21 = [p22[0], p22[1] - 1]
110                     p23 = [p22[0], p22[1] + 1]
111                     p24 = [p22[0], p22[1] + 2]
112 
113                     p11 = [p21[0] - 1, p21[1]]
114                     p12 = [p11[0], p22[1]]
115                     p13 = [p11[0], p23[1]]
116                     p14 = [p11[0], p24[1]]
117 
118                     p31 = [p21[0] + 1, p21[1]]
119                     p32 = [p31[0], p22[1]]
120                     p33 = [p31[0], p23[1]]
121                     p34 = [p31[0], p24[1]]
122 
123                     p41 = [p21[0] + 2, p21[1]]
124                     p42 = [p41[0], p22[1]]
125                     p43 = [p41[0], p23[1]]
126                     p44 = [p41[0], p24[1]]
127 
128                     diff_y, diff_x = p[0] - p22[0], p[1] - p22[1]
129                     r1 = self.LagrangeInterpolation4(diff_x, srcImg[p11[0], p11[1], channel], srcImg[p12[0], p12[1], channel], srcImg[p13[0], p13[1], channel], srcImg[p14[0], p14[1], channel])
130                     r2 = self.LagrangeInterpolation4(diff_x, srcImg[p21[0], p21[1], channel], srcImg[p22[0], p22[1], channel], srcImg[p23[0], p23[1], channel], srcImg[p24[0], p24[1], channel])
131                     r3 = self.LagrangeInterpolation4(diff_x, srcImg[p31[0], p31[1], channel], srcImg[p32[0], p32[1], channel], srcImg[p33[0], p33[1], channel], srcImg[p34[0], p34[1], channel])
132                     r4 = self.LagrangeInterpolation4(diff_x, srcImg[p41[0], p41[1], channel], srcImg[p42[0], p42[1], channel], srcImg[p43[0], p43[1], channel], srcImg[p44[0], p44[1], channel])
133 
134                     c = self.LagrangeInterpolation4(diff_y, r1, r2, r3, r4)
135 
136                     dstImg[dstY, dstX, channel] = np.clip(c, 0, 255)
137         return dstImg

 

 

三次卷积插值法(Cubic Convolution Interpolation)

$使用上图中的卷积核进行加权平均计算,卷积核为u(s),四个等距(距离为1)的采样点记为x_0、x_1、x_2和x_3,采样数值记为y_0、y_1、y_2和y_3,且保证四个点均在[-2,2]区间上,计算得到g(x),假设y_1、y_2、y_3和y_4分别为1、2、-1、4,则可得三次卷积插值函数如下图所示,待插值点横坐标范围为[0,1]$

公式推导

$设u(s)=\begin{cases} A_1|s|^3+B_1|s|^2+C_1|s|+D_1, &0<|s|<1 \\ A_2|s|^3+B_2|s|^2+C_2|s|+D_2, &1<|s|<2 \\ 1, &s=0 \\ 0, &otherwise \end{cases}$

$\because函数在s=0,1,2处连续$

$\therefore\begin{cases} 1=u(0^+)=D_1 \\ 0=u(1^-)=A_1+B_1+C_1+D_1 \\ 0=u(1^+)=A_2+B_2+C_2+D_2 \\ 0=u(2^-)=8A_2+4B_2+2C_2+D_2 \end{cases} (1)$

$\because函数在s=0,1,2处导函数连续$

$\therefore\begin{cases} u'(0^-)=u'(0+) \\ u'(1^-)=u'(1+) \\ u'(2^-)=u'(2+)\end{cases} \Rightarrow \begin{cases} -C_1=C_1 \\ 3A_1+2B_1+C_1=3A_2+2B_2+C_2 \\ 12A_2+4B_2+C+2=0 \end{cases} ~~~~ (2)$

$联立方程组(1)(2),设A_2=a,解得$

$\begin{cases} A_1=a+2 \\ B_1=-(a+3) \\ C_1=0 \\ D_1=1 \\ A_2=a \\ B_2=-5a \\ C_2=8a \\ D_2=-4a \end{cases}\Rightarrow u(s)=\begin{cases} (a+2)|s|^3-(a+3)|s|^2+1, &0<|s|<1 \\  A_2|s|^3+B_2|s|^2+C_2|s|+D_2, &1<|s|<2\\  1, &s=0 \\ 0, &otherwise \end{cases}$

$\because g(x)=\sum_kC_ku(s+j-k), ~~~~k=j-1,j, j+1,j+2且0<s<1$

$又\because \begin{cases}\begin{align} u(s+1)&=as^3-2as^2+as \nonumber \\ u(s)&=(a+2)s^3-(a+3)s^2+1 \nonumber \\ u(s-1)&=-(a+2)s^3+(2a+3)s^2-as \nonumber \\ u(s-2)&=-as^3+as^2 \nonumber \end{align}\end{cases}$

$\begin{align} \therefore g(x) &= C_{j-1}u(s+1)+C_{j}u(s)+C_{j+1}u(s-1)+C_{j+2}u(s-2) \nonumber \\ &= C_{j-1}(as^3-2as^2+as)+C_j[(a+2)s^3-(a+3)s^2+1]+C_{j+1}[-(a+2)s^3+(2a+3)s^2-as]+C_{j+2}[-a^3+as^2] \nonumber \\ &= s^3[aC_{j-1}+(a+2)C_j-(a+2)C_{j+1}-aC_{j+2}]+s^2[-2aC_{j-1}-(a+3)C_j+(2a+3)C_{j+1}+aC_{j+2}]+s[aC_{j-1}-aC_{j+1}]+C_j \nonumber \end{align} ~~(3)$

$f在x_j处泰勒展开得到$

$f(x)=f(x_j)+f'(x_j)(x-x_j)+\frac{1}{2}f''(x_j)(x-x_j)^2+\cdots$

$\therefore \begin{cases} f(x_{j+1})=f(x_j)+f'(x_j)(x_{j+1}-x_j)+\frac{1}{2}f''(x_j)(x_{j+1}-x_j)^2+\cdots \\ f(x_{j+2})=f(x_j)+f'(x_j)(x_{j+2}-x_j)+\frac{1}{2}f''(x_j)(x_{j+2}-x_j)^2+\cdots \\ f(x_{j-1})=f(x_j)+f'(x_j)(x_{j-1}-x_j)+\frac{1}{2}f''(x_j)(x_{j-1}-x_j)^2+\cdots \end{cases}$

$令x_{j+1}-x_j=h$

$\because x_{i+1}=x_i+1$

$\therefore x_{j+2}-x_j=2h,x_{j-1}-x_j=-h$

$\therefore \begin{cases} f(x_{j+2})=f(x_j)+2f'(x_j)h+2f''(x_j)h^2+\cdots \\ f(x_{j+1})=f(x_j)+f'(x_j)h+\frac{1}{2}f''(x_j)h^2+\cdots \\ f(x_{j-1})=f(x_j)-f'(x_j)h+\frac{1}{2}f''(x_j)h^2+\cdots \end{cases}$ 

$\therefore \begin{cases} c_{j-1}=f(x_j)-f'(x_j)h+\frac{1}{2}f''(x_j)h^2+o(h^3) \\ c_j=f(x_j) \\ c_{j+1}=f(x_j)+f'(x_j)h+\frac{1}{2}f''(x_j)h^2+o(h^3) \\ c_{j+2}=f(x_j)+2f'(x_j)h+2f''(x_j)h^2+o(h^3) \end{cases} ~~ (4) $

$将(4)代入(3),得$

$g(x)=-(2a+1)[2hf'(x_j)+h^2f''(x_j)]s^3+[(6a+3)hf'(x_j)+\frac{4a+3}{2}h^2f''(x_j)]s^2-2ahf'(x_j)s+f(x_j)+o(h^3)$

$\because h=1,s=x-x_J$

$\therefore sh=x-x_j$

$\begin{align}\therefore f(x)&= f(x_j)+f'(x_j)(x-x_j)+\frac{1}{2}f''(x_j)(x-x_j)^2+o(h^3) \nonumber \\ &= f(x_j)+f'(x_j)sh+\frac{1}{2}f''(x_j)s^2h^2+o(h^3) \nonumber \end{align}$

$\therefore f(x)-g(x)=(2a+1)[2hf'(x_j)+h^2f''(x_j)]s^3-(2a+1)[3hf'(x_j)+h^2f''(x_j)]s^2+[(2a+1)hf'(x_j)]s+o(h^3)$

$\because 期望f(x)-g(x)趋于0$

$\therefore 2a+1=0 \Rightarrow a=-\frac{1}{2}$

$\therefore u(s)=\begin{cases} \frac{3}{2}|s|^3-\frac{5}{2}|s|^2+1, &0<|s|<1 \\ -\frac{1}{2}|s|^3+\frac{5}{2}|s|^2-4|s|+2, &1<|s|<2 \\ 1, &s=0 \\ 0, &otherwise \end{cases}$

$\therefore g(s)=s^3[-\frac{1}{2}c_{j-1}+\frac{3}{2}c_j-\frac{3}{2}c_{j+1}+\frac{1}{2}c_{j+2}]+s^2[c_{j-1}-\frac{5}{2}c_j+2c_{j+1}-\frac{1}{2}c_{j+2}]+s[-\frac{1}{2}c_{j-1}+\frac{1}{2}c_{j+1}]+c_j$

图像插值

$p_{11}$    $p_{12}$    $p_{13}$    $p_{14}$

     

$p_{21}$    $p_{22}$    $p_{23}$    $p_{24}$

           $p$

$p_{31}$    $p_{32}$    $p_{33}$    $p_{34}$

 

$p_{41}$    $p_{42}$    $p_{43}$    $p_{44}$

python代码

 1 class BiCubicConvInterpolation:
 2     @staticmethod
 3     def CubicConvInterpolation1(p0, p1, p2, p3, s):
 4         # 用g(s)公式计算,已经将四个u(s)计算完毕并整理
 5         # as^3 + bs^2 + cs + d
 6         a = 0.5 * (-p0 + 3.0 * p1 - 3.0 * p2 + p3)
 7         b = 0.5 * (2.0 * p0 - 5.0 * p1 + 4.0 * p2 - p3)
 8         c = 0.5 * (-p0 + p2)
 9         d = p1
10         return d + s * (c + s * (b + s * a))
11 
12     @staticmethod
13     def CubicConvInterpolation2(s):
14         # 用u(s)公式计算
15         s = abs(s)
16         if s <= 1:
17             return 1.5 * s ** 3 - 2.5 * s ** 2 + 1
18         elif s <= 2:
19             return -0.5 * s ** 3 + 2.5 * s ** 2 - 4 * s + 2
20         else:
21             return 0
22 
23     def biCubic1(self, srcImg, dstH, dstW):
24         # p11   p12   p13   p14
25         #
26         # p21   p22   p23   p24
27         #           p
28         # p31   p32   p33   p34
29         #
30         # p41   p42   p43   p44
31         dstH, dstW = int(dstH), int(dstW)
32         scrH, scrW, _ = srcImg.shape
33         srcImg = np.pad(srcImg, ((1, 1), (1, 1), (0, 0)), 'edge')
34         dstImg = np.zeros((dstH, dstW, 1), dtype=np.uint8)
35         for dstY in range(dstH):
36             for dstX in range(dstW):
37                 for channel in [0]:
38                     y = dstY * scrH / dstH
39                     x = dstX * scrW / dstW
40                     y1 = math.floor(y)
41                     x1 = math.floor(x)
42 
43                     array = []
44                     for i in [-1, 0, 1, 2]:
45                         temp = self.CubicConvInterpolation1(srcImg[y1 + i, x1 - 1, channel],
46                                                             srcImg[y1 + i, x1, channel],
47                                                             srcImg[y1 + i, x1 + 1, channel],
48                                                             srcImg[y1 + i, x1 + 2, channel],
49                                                             x - x1)
50                         array.append(temp)
51 
52                     temp = self.CubicConvInterpolation1(array[0], array[1], array[2], array[3], y - y1)
53                     dstImg[dstY, dstX, channel] = np.clip(temp, 0, 255)
54 
55         return dstImg
56 
57     def biCubic2(self, srcImg, dstH, dstW):
58         # p11   p12   p13   p14
59         #
60         # p21   p22   p23   p24
61         #           p
62         # p31   p32   p33   p34
63         #
64         # p41   p42   p43   p44
65         dstH, dstW = int(dstH), int(dstW)
66         scrH, scrW, _ = srcImg.shape
67         srcImg = np.pad(srcImg, ((1, 1), (1, 1), (0, 0)), 'edge')
68         dstImg = np.zeros((dstH, dstW, 3), dtype=np.uint8)
69         for dstY in range(dstH):
70             for dstX in range(dstW):
71                 for channel in [0, 1, 2]:
72                     y = dstY * scrH / dstH
73                     x = dstX * scrW / dstW
74                     y1 = math.floor(y)
75                     x1 = math.floor(x)
76 
77                     array = []
78                     for i in [-1, 0, 1, 2]:
79                         temp = 0
80                         for j in [-1, 0, 1, 2]:
81                             temp += srcImg[y1 + i, x1 + j, channel] * self.CubicConvInterpolation2(x - (x1 + j))
82                         array.append(temp)
83 
84                     temp = 0
85                     for i in [-1, 0, 1, 2]:
86                         temp += array[i + 1] * self.CubicConvInterpolation2(y - (y1 + i))
87                     dstImg[dstY, dstX, channel] = np.clip(temp, 0, 255)
88 
89         return dstImg

 

三次样条插值

$在n-1个区间上寻找n-1个三次曲线,使其满足相邻曲线在端点处值相等、一阶导数相等,二阶导数相等,在加以边界条件后可得每个曲线的方程,然后沿x轴依次偏移对应的距离即可得到插值结果,如仅需要特定范围内的结果,则可以大幅减少计算量$

公式推导

$设S_i(x)=a_i+b_i(x-x_i)+c_i(x-x_i)^2+d_i(x-x_i)^3, ~~~~i=0,1,...,n-1$

$则 \begin{cases} S_i'(x)=b_i+2c_i(x-x_i)+3d_i(x-x_i)^2\\ S_i''(x)=2c_i+6d_i(x-x_i)\\ S_i'''(x)=6d_i\\ \end{cases} ~~~~i=0,1,...,n-1$

$设h_i(x)=x_{i+1}-x_i,可得$

$\begin{cases} S_i(x)=a_i+b_ih_i+c_ih_i^2+d_ih_i^3\\ S_i'(x)=b_i+2c_ih_i+3d_ih_i^2\\ S_i''(x)=2c_i+6d_ih_i\\ S_i'''(x)=6d_i\\ \end{cases} ~~~~i=0,1,...,n-1$

$\because S_i(x)过点(x_i,y_i)$

$\therefore S_i(x)=a_i=y+i, ~~~~i=0,1,...,n-1 ~~~~~~(1)$

$\because S_i(x)与S_{i+1}(x)在X_{i+1}处相等$

$\therefore S_i(x_{i+1})=S_{i+1}(x_{i+1})$

$\Rightarrow a_i+b_ih_i+c_ih_i^2+d_ih_i^3=y_{i+1}, ~~~~i=0,1,...,n-2~~~~~~(2)$

$\because S_i'(x)与S_{i+1}'(x)在X_{i+1}处相等$

$\therefore S_i'(x)-S_{i+1}'(x)=0$

$\Rightarrow b_i+2c_ih_i+3d_ih_i^2-b_{i+1}=0~~~~~~(3)$

$\because S_i''(x)与S_{i+1}''(x)在X_{i+1}处相等$

$\therefore S_i''(x)-S_{i+1}''(x)=0$

$\Rightarrow 2c_i+6d_ih_i-2c_{i+1}=0, ~~~~i=0,1,...,n-2~~~~~~(4)$

$设m_i=S_i(x_i)=2c_i,即c_i=\frac{1}{2}m_i, ~~~~i=0,1,...,n-1~~~~~~(5)$

$将(5)代入(4),得$

$2c_i+6d_ih_i-2c_{i+1}=0$

$\Rightarrow m_i+6h_id_i-m_{i+1}=0$

$\Rightarrow d_i=\frac{m_{i+1}-m_i}{6h_i}, ~~~~i=0,1,...,n-2~~~~~~(6)$

$将(1)(5)(6)代入(2),得$

\begin{align}
&a_i+b_ih_i+c_ih_i^2+d_ih_i^3=y_{i+1} \nonumber \\
\Rightarrow&y_i+b_ih_i+\frac{1}{2}m_ih_i^2+\frac{m_{i+1}-m_i}{6h_i}h_i^3=y_{i+1} \nonumber \\
\Rightarrow&b_i=\frac{y_{i+1}-y_i}{h_i}-\frac{1}{2}m_ih_i-\frac{1}{6}(m_{i+1}-m_i)h_i \nonumber \\
\Rightarrow&b_i=\frac{y_{i+1}-y_i}{h_i}-\frac{1}{3}m_ih_i-\frac{1}{6}m_{i+1}h_i, ~~~~i=0,1,...,n-2~~~~~~(7) \nonumber
\end{align}

$将(5)(6)(7)代入(3),得$

\begin{align}
&\frac{y_{i+1}-y{i}}{h_i}-\frac{1}{3}m_ih_i-\frac{1}{6}m_{i+1}h_i+2\cdot\frac{1}{2}m_ih_i+3\frac{m_{i+1}-m_i}{6h_i}h_i^2-(\frac{y_{i+2}-y_{i+1}}{h_{i+1}}-\frac{1}{3}m_{i+1}h_{i+1}-\frac{1}{6}m_{i+2}h_{i+1})=0 \nonumber \\
\Rightarrow&\frac{y_{i+1}-y{i}}{h_i}-\frac{1}{3}m_ih_i-\frac{1}{6}m_{i+1}h_i+m_ih_i+\frac{1}{2}(m_{i+1}-m_i)h_i-\frac{y_{i+2}-y_{i+1}}{h_{i+1}}+\frac{1}{3}m_{i+1}h_{i+1}+\frac{1}{6}m_{i+2}h_{i+1}=0 \nonumber \\
\Rightarrow&m_ih_i(-\frac{1}{3}+1-\frac{1}{2})+m_{i+1}h_i(-\frac{1}{6}+\frac{1}{2})+\frac{1}{3}m_{i+1}h_{i+1}+\frac{1}{6}m_{i+2}h_{i+1}=\frac{y_{i+2}-y_{i+1}}{h_{i+1}}-\frac{y_{i+1}-y_{i}}{h_{i}} \nonumber \\
\Rightarrow&\frac{1}{6}(m_ih_i+2m_{i+1}h_i+2m_{i+1}h_{i+1}+m_{i+2}h_{i+1})=\frac{y_{i+2}-y_{i+1}}{h_{i+1}}-\frac{y_{i+1}-y_{i}}{h_{i}} \nonumber \\
\Rightarrow&m_ih_i+2m_{i+1}(h_i+h_{i+1})+m_{i+2}h_{i+1}=6(\frac{y_{i+2}-y_{i+1}}{h_{i+1}}-\frac{y_{i+1}-y_{i}}{h_{i}}), ~~~~i=0,1,...,n-2~~~~~~(8) \nonumber 
\end{align}

$由(8)可知i=0,1,...,n-2,则有m_0,m_1,...,m_n,需要两个额外条件方程组才有解$

自然边界(Natural)

$m_0=0,m_n=0$

\begin{bmatrix} \tiny
1 & 0 & 0 & 0 & 0 & \cdots & 0\\
h_0 & 2(h_0+h_1) & h_1 & 0 & 0 & \cdots & 0\\
0 & h_1 & 2(h_1+h_2) & h_2 & 0 & \cdots & 0\\
0 & 0 & h_2 & 2(h_2+h_3) & h_3 & \cdots & 0\\
\vdots& & & \ddots & \ddots & \ddots & \vdots\\
0 & \cdots & & & h_{n-2} & 2(h_{n-2}+h_{n-1}) & h_{n-1}\\
0 & \cdots & & & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
m_0\\m_1\\m_2\\m_3\\\vdots\\m_{n-1}\\m_n
\end{bmatrix}=6
\begin{bmatrix}
0\\
\frac{y_2-y_1}{h_1}-\frac{y_1-y_0}{h_0}\\
\frac{y_3-y_2}{h_2}-\frac{y_2-y_1}{h_1}\\
\frac{y_4-y_3}{h_3}-\frac{y_3-y_2}{h_2}\\
\vdots\\
\frac{y_n-y_{n-1}}{h_{n-1}}-\frac{y_{n-1}-y_{n-2}}{h_{n-2}}\\
0
\end{bmatrix}

固定边界(Clamped)

\begin{align}
&\begin{cases}
S_0'(x_0)=A\\
S_{n-1}'(x_n)=B
\end{cases} \nonumber \\
\Rightarrow&\begin{cases}
b_0=A\\
b_{n-1}+2c_{n-1}h_{n-1}+3d_{n-1}h_{n-1}^2=B
\end{cases} \nonumber \\
\Rightarrow&\begin{cases}
A=\frac{y_1-y_0}{h_0}-\frac{h_0}{2}m_0-\frac{h_0}{6}(m_1-m_0)\\
B=\frac{y_n-y_{n-1}}{h_{n-1}}-\frac{1}{3}m_{n-1}h_{n-1}+m_{n-1}h_{n-1}+\frac{1}{2}m_nh_{n-1}-\frac{1}{2}m_{n-1}h_{n-1}
\end{cases} \nonumber \\
\Rightarrow&\begin{cases}
2h_0m_0+h_0m_1=6(\frac{y_1-y_0}{h_0}-A)\\
h_{n-1}m_{n-1}+2h_{n-1}m_{n}=6(B-\frac{y_n-y_{n-1}}{h_{n-1}})
\end{cases} \nonumber \\
\end{align}

\begin{bmatrix}
2 & 1 & 0 & 0 & 0 & \cdots & 0\\
h_0 & 2(h_0+h_1) & h_1 & 0 & 0 & \cdots & 0\\
0 & h_1 & 2(h_1+h_2) & h_2 & 0 & \cdots & 0\\
0 & 0 & h_2 & 2(h_2+h_3) & h_3 & \cdots & 0\\
\vdots& & & \ddots & \ddots & \ddots & \vdots\\
0 & \cdots & & & h_{n-2} & 2(h_{n-2}+h_{n-1}) & h_{n-1}\\
0 & \cdots & & & 0 & 1 & 2
\end{bmatrix}
\begin{bmatrix}
m_0\\m_1\\m_2\\m_3\\\vdots\\m_{n-1}\\m_n
\end{bmatrix}=6
\begin{bmatrix}
\frac{y_1-y_0}{h_0}-A\\
\frac{y_2-y_1}{h_1}-\frac{y_1-y_0}{h_0}\\
\frac{y_3-y_2}{h_2}-\frac{y_2-y_1}{h_1}\\
\frac{y_4-y_3}{h_3}-\frac{y_3-y_2}{h_2}\\
\vdots\\
\frac{y_n-y_{n-1}}{h_{n-1}}-\frac{y_{n-1}-y_{n-2}}{h_{n-2}}\\
B-\frac{y_n-y_{n-1}}{h_{n-1}}
\end{bmatrix}

非节点边界(Not-A-Knot)

\begin{align}
&\begin{cases}
S_0'''(x_1)=S_1'''(x_1)\\
S_{n-2}'''(x_{n-1})=S_{n-1}'''(x_{n-1})
\end{cases} \nonumber \\
\Rightarrow&\begin{cases}
6\cdot\frac{m_1-m_0}{6h_0}=6\cdot\frac{m_2-m_1}{6h_1}\\
6\cdot\frac{m_{n-1}-m_{n-2}}{6h_{n-2}}=6\cdot\frac{m_n-m_{n-1}}{6h_{n-1}}
\end{cases} \nonumber \\
\Rightarrow&\begin{cases}
h_1(m_1-m_0)=h_0(m_2-m_1)\\
h_{n-1}(m_{n-1}-m_{n-2})=h_{n-2}(m_n-m_{n-1})
\end{cases} \nonumber \\
\Rightarrow&\begin{cases}
-h_1m_0+(h_1+h_0)m_1-h_0m_2=0\\
-h_{n-1}m_{n-2}+(h_{n-1}+h_{n-2})m_{n-1}-h_{n-2}m_n=0
\end{cases} \nonumber \\
\end{align}

\begin{bmatrix}
-h_1 & h_0+h_1 & -h_0 & 0 & 0 & \cdots & 0\\
h_0 & 2(h_0+h_1) & h_1 & 0 & 0 & \cdots & 0\\
0 & h_1 & 2(h_1+h_2) & h_2 & 0 & \cdots & 0\\
0 & 0 & h_2 & 2(h_2+h_3) & h_3 & \cdots & 0\\
\vdots& & & \ddots & \ddots & \ddots & \vdots\\
0 & \cdots & & & h_{n-2} & 2(h_{n-2}+h_{n-1}) & h_{n-1}\\
0 & \cdots & & & -h_{n-1} & h_{n-1}+h_{n-2} & -h_{n-2}
\end{bmatrix}
\begin{bmatrix}
m_0\\m_1\\m_2\\m_3\\\vdots\\m_{n-1}\\m_n
\end{bmatrix}=6
\begin{bmatrix}
0\\
\frac{y_2-y_1}{h_1}-\frac{y_1-y_0}{h_0}\\
\frac{y_3-y_2}{h_2}-\frac{y_2-y_1}{h_1}\\
\frac{y_4-y_3}{h_3}-\frac{y_3-y_2}{h_2}\\
\vdots\\
\frac{y_n-y_{n-1}}{h_{n-1}}-\frac{y_{n-1}-y_{n-2}}{h_{n-2}}\\
0
\end{bmatrix}

在n=4时

通用公式

自然边界

\begin{bmatrix}
1 & 0 & 0 & 0 \\
h_0 & 2(h_0+h_1) & h_1 & 0 \\
0 & h_1 & 2(h_1+h_2) & h_2 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
m_0\\m_1\\m_2\\m_3
\end{bmatrix}=6
\begin{bmatrix}
0\\
\frac{y_2-y_1}{h_1}-\frac{y_1-y_0}{h_0}\\
\frac{y_3-y_2}{h_2}-\frac{y_2-y_1}{h_1}\\
0
\end{bmatrix}

固定边界

\begin{bmatrix}
2 & 1 & 0 & 0 \\
h_0 & 2(h_0+h_1) & h_1 & 0 \\
0 & h_1 & 2(h_1+h_2) & h_2 \\
0 & 0 & 1 & 2 \\
\end{bmatrix}
\begin{bmatrix}
m_0\\m_1\\m_2\\m_3
\end{bmatrix}=6
\begin{bmatrix}
\frac{y_1-y_0}{h_0}-A\\
\frac{y_2-y_1}{h_1}-\frac{y_1-y_0}{h_0}\\
\frac{y_3-y_2}{h_2}-\frac{y_2-y_1}{h_1}\\
B-\frac{y_3-y_2}{h_2}
\end{bmatrix}

非节点边界

\begin{bmatrix}
-h_1 & h_0+h_1 & -h_0 & 0 \\
h_0 & 2(h_0+h_1) & h_1 & 0 \\
0 & h_1 & 2(h_1+h_2) & h_2 \\
0 & -h_2 & h_1+h_2 & -h_1 \\
\end{bmatrix}
\begin{bmatrix}
m_0\\m_1\\m_2\\m_3
\end{bmatrix}=6
\begin{bmatrix}
0\\
\frac{y_2-y_1}{h_1}-\frac{y_1-y_0}{h_0}\\
\frac{y_3-y_2}{h_2}-\frac{y_2-y_1}{h_1}\\
0
\end{bmatrix}

图像插值

$x_{i+1}-x_i=1 \Rightarrow h_i(x)=1$

$在n=4时,即四个点时如下所示$

$p_{11}$    $p_{12}$    $p_{13}$    $p_{14}$

     

$p_{21}$    $p_{22}$    $p_{23}$    $p_{24}$

           $p$

$p_{31}$    $p_{32}$    $p_{33}$    $p_{34}$

 

$p_{41}$    $p_{42}$    $p_{43}$    $p_{44}$

自然边界(可用TDMA或化简计算)

\begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 4 & 1 & 0 \\
0 & 1 & 4 & 1 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
m_0\\m_1\\m_2\\m_3
\end{bmatrix}=6
\begin{bmatrix}
0\\
y_0+y_2-2y_1\\
y_1+y_3-2y_2\\
0
\end{bmatrix}

固定边界(只能用TDMA计算)

\begin{bmatrix}
2 & 1 & 0 & 0 \\
1 & 4 & 1 & 0 \\
0 & 1 & 4 & 1 \\
0 & 0 & 1 & 2 \\
\end{bmatrix}
\begin{bmatrix}
m_0\\m_1\\m_2\\m_3
\end{bmatrix}=6
\begin{bmatrix}
y_1-y_0-A\\
y_0+y_2-2y_1\\
y_1+y_3-2y_2\\
y_2-y_3+B
\end{bmatrix}

非节点边界(只能化简计算)

\begin{bmatrix}
-1 & 2 & -1 & 0 \\
1 & 4 & 1 & 0 \\
0 & 1 & 4 & 1 \\
0 & -1 & 2 & -1 \\
\end{bmatrix}
\begin{bmatrix}
m_0\\m_1\\m_2\\m_3
\end{bmatrix}=6
\begin{bmatrix}
0\\
y_0+y_2-2y_1\\
y_1+y_3-2y_2\\
0
\end{bmatrix}

python代码

  1 class BiSplineInterpolation:
  2     @staticmethod
  3     def TDMA(a, b, c, d):
  4         n = len(d)
  5 
  6         c[0] = c[0] / b[0]
  7         d[0] = d[0] / b[0]
  8 
  9         for i in range(1, n):
 10             coef = 1.0 / (b[i] - a[i] * c[i - 1])
 11             c[i] = coef * c[i]
 12             d[i] = coef * (d[i] - a[i] * d[i - 1])
 13 
 14         for i in range(n - 2, -1, -1):
 15             d[i] = d[i] - c[i] * d[i + 1]
 16 
 17         return d
 18 
 19     @staticmethod
 20     def Simplified_Natural4(y1, y2, y3, y4):
 21         # 四点自然边界化简公式
 22         d1 = y1 + y3 - 2 * y2
 23         d2 = y2 + y4 - 2 * y3
 24 
 25         k0 = 0
 26         k1 = (4 * d1 - d2) * 0.4
 27         k2 = (4 * d2 - d1) * 0.4
 28         k3 = 0
 29 
 30         return [k0, k1, k2, k3]
 31 
 32     @staticmethod
 33     def Simplified_Not_A_Knot4(y1, y2, y3, y4):
 34         # 四点非节点边界化简公式
 35         d1 = y1 + y3 - 2 * y2
 36         d2 = y2 + y4 - 2 * y3
 37 
 38         k0 = 2 * d1 - d2
 39         k1 = d1
 40         k2 = d2
 41         k3 = 2 * d2 - d1
 42 
 43         return [k0, k1, k2, k3]
 44 
 45     # TDMA矩阵说明
 46     # a0 和 c3 没有实际意义,占位用
 47     # a0 [b0 c0 0  0 ]     [x0]   [d0]
 48     #    [a1 b1 c1 0 ]     [x1] = [d1]
 49     #    [0  a2 b2 c2]     [x2]   [d2]
 50     #    [0  0  a3 b3] c3  [x3]   [d3]
 51 
 52     def SplineInterpolationNatural4(self, x, y1, y2, y3, y4):
 53         # 用TDMA计算
 54         # matrix_a = [0, 1, 1, 0]
 55         # matrix_b = [1, 4, 4, 1]
 56         # matrix_c = [0, 1, 1, 0]
 57         # matrix_d = [0, 6 * (y1 + y3 - 2 * y2), 6 * (y2 + y4 - 2 * y3), 0]
 58         # matrix_x = self.TDMA(matrix_a, matrix_b, matrix_c, matrix_d)
 59 
 60         # 化简计算
 61         matrix_x = self.Simplified_Natural4(y1, y2, y3, y4)
 62 
 63         a = y2
 64         b = y3 - y2 - matrix_x[1] / 3.0 - matrix_x[2] / 6.0
 65         c = matrix_x[1] / 2.0
 66         d = (matrix_x[2] - matrix_x[1]) / 6.0
 67 
 68         s = a + b * x + c * x * x + d * x * x * x
 69         return s
 70 
 71     def SplineInterpolationClamped4(self, x, y1, y2, y3, y4):
 72         # 仅有TDMA计算,无法化简
 73         A, B = 1, 1
 74 
 75         matrix_a = [0, 1, 1, 1]
 76         matrix_b = [2, 4, 4, 2]
 77         matrix_c = [1, 1, 1, 0]
 78         matrix_d = [6 * (y2 - y1 - A), 6 * (y1 + y3 - 2 * y2), 6 * (y2 + y4 - 2 * y3), 6 * (B - y4 + y3)]
 79         matrix_x = self.TDMA(matrix_a, matrix_b, matrix_c, matrix_d)
 80 
 81         a = y2
 82         b = y3 - y2 - matrix_x[1] / 3.0 - matrix_x[2] / 6.0
 83         c = matrix_x[1] / 2.0
 84         d = (matrix_x[2] - matrix_x[1]) / 6.0
 85 
 86         s = a + b * x + c * x * x + d * x * x * x
 87         return s
 88 
 89     def SplineInterpolationNotAKnot4(self, x, y1, y2, y3, y4):
 90         # 无法使用TDMA计算
 91         matrix_x = self.Simplified_Not_A_Knot4(y1, y2, y3, y4)
 92 
 93         a = y2
 94         b = y3 - y2 - matrix_x[1] / 3.0 - matrix_x[2] / 6.0
 95         c = matrix_x[1] / 2.0
 96         d = (matrix_x[2] - matrix_x[1]) / 6.0
 97 
 98         s = a + b * x + c * x * x + d * x * x * x
 99         return s
100 
101     def biSpline4(self, srcImg, dstH, dstW):
102         dstH, dstW = int(dstH), int(dstW)
103         srcH, srcW, _ = srcImg.shape
104         srcImg = np.pad(srcImg, ((1, 2), (1, 2), (0, 0)), 'edge')
105         dstImg = np.zeros((dstH, dstW, 3), dtype=np.uint8)
106         for dstY in range(dstH):
107             for dstX in range(dstW):
108                 for channel in [0, 1, 2]:
109                     # p11   p12   p13   p14
110                     #
111                     # p21   p22   p23   p24
112                     #           p
113                     # p31   p32   p33   p34
114                     #
115                     # p41   p42   p43   p44
116                     # 储存为 p(y, x)
117                     p = [dstY * srcH / dstH, dstX * srcW / dstW]
118                     p22 = [math.floor(p[0]), math.floor(p[1])]
119                     p21 = [p22[0], p22[1] - 1]
120                     p23 = [p22[0], p22[1] + 1]
121                     p24 = [p22[0], p22[1] + 2]
122 
123                     p11 = [p21[0] - 1, p21[1]]
124                     p12 = [p11[0], p22[1]]
125                     p13 = [p11[0], p23[1]]
126                     p14 = [p11[0], p24[1]]
127 
128                     p31 = [p21[0] + 1, p21[1]]
129                     p32 = [p31[0], p22[1]]
130                     p33 = [p31[0], p23[1]]
131                     p34 = [p31[0], p24[1]]
132 
133                     p41 = [p21[0] + 2, p21[1]]
134                     p42 = [p41[0], p22[1]]
135                     p43 = [p41[0], p23[1]]
136                     p44 = [p41[0], p24[1]]
137 
138                     diff_y, diff_x = p[0] - p22[0], p[1] - p22[1]
139                     r1 = self.SplineInterpolationNatural4(diff_x, srcImg[p11[0], p11[1], channel], srcImg[p12[0], p12[1], channel], srcImg[p13[0], p13[1], channel], srcImg[p14[0], p14[1], channel])
140                     r2 = self.SplineInterpolationNatural4(diff_x, srcImg[p21[0], p21[1], channel], srcImg[p22[0], p22[1], channel], srcImg[p23[0], p23[1], channel], srcImg[p24[0], p24[1], channel])
141                     r3 = self.SplineInterpolationNatural4(diff_x, srcImg[p31[0], p31[1], channel], srcImg[p32[0], p32[1], channel], srcImg[p33[0], p33[1], channel], srcImg[p34[0], p34[1], channel])
142                     r4 = self.SplineInterpolationNatural4(diff_x, srcImg[p41[0], p41[1], channel], srcImg[p42[0], p42[1], channel], srcImg[p43[0], p43[1], channel], srcImg[p44[0], p44[1], channel])
143 
144                     c = self.SplineInterpolationNatural4(diff_y, r1, r2, r3, r4)
145 
146                     dstImg[dstY, dstX, channel] = np.clip(c, 0, 255)
147         return dstImg

 

Lanzos插值

同样的是卷积的思路,只是卷积核变成了下式

L(x)=\begin{cases}
sinc(x)sinc(x/a), &-a<x<a \\
0, &otherwise
\end{cases}

将三次卷积插值的代码稍作修改即可

  1 class BiLanczosInterpolation:
  2     @staticmethod
  3     def LanczosConvKernel(s, a):
  4         if s == 0:
  5             return 1
  6         elif abs(s) <= a:
  7             return a * np.sin(np.pi * s) * np.sin(np.pi * s / a) / (pow(np.pi, 2) * pow(s, 2))
  8         else:
  9             return 0
 10 
 11     def biLanczos4(self, srcImg, dstH, dstW):
 12         # p11   p12   p13   p14
 13         #
 14         # p21   p22   p23   p24
 15         #           p
 16         # p31   p32   p33   p34
 17         #
 18         # p41   p42   p43   p44
 19         dstH, dstW = int(dstH), int(dstW)
 20         scrH, scrW, _ = srcImg.shape
 21         srcImg = np.pad(srcImg, ((1, 1), (1, 1), (0, 0)), 'edge')
 22         dstImg = np.zeros((dstH, dstW, 1), dtype=np.uint8)
 23         convKernelIndex = [-1, 0, 1, 2]
 24         for dstY in range(dstH):
 25             for dstX in range(dstW):
 26                 for channel in [0]:
 27                     y = dstY * scrH / dstH
 28                     x = dstX * scrW / dstW
 29                     y1 = math.floor(y)
 30                     x1 = math.floor(x)
 31 
 32                     array = []
 33                     for i in convKernelIndex:
 34                         temp = 0
 35                         for j in convKernelIndex:
 36                             temp += srcImg[y1 + i, x1 + j, channel] * self.LanczosConvKernel(x - (x1 + j), 2)
 37                         array.append(temp)
 38 
 39                     temp = 0
 40                     for i in convKernelIndex:
 41                         temp += array[i + 1] * self.LanczosConvKernel(y - (y1 + i), 2)
 42                     dstImg[dstY, dstX, channel] = np.clip(temp, 0, 255)
 43 
 44         return dstImg
 45 
 46     def biLanczos6(self, srcImg, dstH, dstW):
 47         # p11   p12   p13   p14   p15   p16
 48         #
 49         # p21   p22   p23   p24   p25   p26
 50         #
 51         # p31   p32   p33   p34   p35   p36
 52         #                 p
 53         # p41   p42   p43   p44   p45   p46
 54         #
 55         # p51   p52   p53   p54   p55   p56
 56         #
 57         # p61   p62   p63   p64   p65   p66
 58         dstH, dstW = int(dstH), int(dstW)
 59         scrH, scrW, _ = srcImg.shape
 60         srcImg = np.pad(srcImg, ((2, 2), (2, 2), (0, 0)), 'edge')
 61         dstImg = np.zeros((dstH, dstW, 1), dtype=np.uint8)
 62         convKernelIndex = [-2, -1, 0, 1, 2, 3]
 63         for dstY in range(dstH):
 64             for dstX in range(dstW):
 65                 for channel in [0]:
 66                     y = dstY * scrH / dstH
 67                     x = dstX * scrW / dstW
 68                     y1 = math.floor(y)
 69                     x1 = math.floor(x)
 70 
 71                     array = []
 72                     for i in convKernelIndex:
 73                         temp = 0
 74                         for j in convKernelIndex:
 75                             temp += srcImg[y1 + i, x1 + j, channel] * self.LanczosConvKernel(x - (x1 + j), 3)
 76                         array.append(temp)
 77 
 78                     temp = 0
 79                     for i in convKernelIndex:
 80                         temp += array[i + 1] * self.LanczosConvKernel(y - (y1 + i), 3)
 81                     dstImg[dstY, dstX, channel] = np.clip(temp, 0, 255)
 82 
 83         return dstImg
 84 
 85     def biLanczos8(self, srcImg, dstH, dstW):
 86         # p11   p12   p13   p14   p15   p16   p17   p18
 87         #
 88         # p21   p22   p23   p24   p25   p26   p27   p28
 89         #
 90         # p31   p32   p33   p34   p35   p36   p37   p38
 91         #
 92         # p41   p42   p43   p44   p45   p46   p47   p48
 93         #                       p
 94         # p51   p52   p53   p54   p55   p56   p57   p58
 95         #
 96         # p61   p62   p63   p64   p65   p66   p67   p68
 97         #
 98         # p71   p72   p73   p74   p75   p76   p77   p78
 99         #
100         # p81   p82   p83   p84   p85   p86   p87   p88
101         dstH, dstW = int(dstH), int(dstW)
102         scrH, scrW, _ = srcImg.shape
103         srcImg = np.pad(srcImg, ((3, 3), (3, 3), (0, 0)), 'edge')
104         dstImg = np.zeros((dstH, dstW, 1), dtype=np.uint8)
105         convKernelIndex = [-3, -2, -1, 0, 1, 2, 3, 4]
106         for dstY in range(dstH):
107             for dstX in range(dstW):
108                 for channel in [0]:
109                     y = dstY * scrH / dstH
110                     x = dstX * scrW / dstW
111                     y1 = math.floor(y)
112                     x1 = math.floor(x)
113 
114                     array = []
115                     for i in convKernelIndex:
116                         temp = 0
117                         for j in convKernelIndex:
118                             temp += srcImg[y1 + i, x1 + j, channel] * self.LanczosConvKernel(x - (x1 + j), 4)
119                         array.append(temp)
120 
121                     temp = 0
122                     for i in convKernelIndex:
123                         temp += array[i + 1] * self.LanczosConvKernel(y - (y1 + i), 4)
124                     dstImg[dstY, dstX, channel] = np.clip(temp, 0, 255)
125 
126         return dstImg

 

 感谢

如何直观地理解拉格朗日插值法?
https://www.zhihu.com/question/58333118
图像处理中的三次卷积插值(Cubic Convolution)
https://blog.csdn.net/shiyimin1/article/details/80141333
Bicubic interpolation
https://en.wikipedia.org/wiki/Bicubic_interpolation
Cubic convolution interpolation for digital image processing (1981)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.320.776
三次样条插值(Cubic Spline Interpolation)及代码实现(C语言)
https://www.cnblogs.com/xpvincent/archive/2013/01/26/2878092.html
Spline interpolation
https://en.wikipedia.org/wiki/Spline_interpolation
Lanczos resampling
https://en.wikipedia.org/wiki/Lanczos_resampling

 

posted @ 2021-08-24 12:55  Pyrokine  阅读(3209)  评论(0编辑  收藏  举报