DESIGN L. Protein Molecule Murine P97 Protein Molecule Photograph
By Laguna Design[EB/OL]. https://amycatherinedesigns.com/protein-molecule/816605_
murine-p97-protein-molecule-photograph-by-laguna-design/#.
[2] WIKIPEDIA. Calmodulin[EB/OL]. https://en.wikipedia.org/wiki/Calmodulin.
[3] ACADEMY K. Orders of protein structure[EB/OL]. https://www.khanacademy.org/science/
biology/macromolecules/proteins-and-amino-acids/a/orders-of-protein-structure.
[4] 张海仓, 高玉娟, 邓明华, 等. 蛋白质中残基远程相互作用预测算法研究综述[J]. 计算机
研究与发展, 2017, 54(1):1-19.
[5] SATHYAPRIYA R, DUARTE J M, STEHR H, et al. Defining an essence of structure determining residue contacts in proteins[J]. PLoS computational biology, 2009, 5(12):e1000584.
[6] VASSURA M, MARGARA L, DI LENA P, et al. FT-COMAR: fault tolerant three-dimensional
structure reconstruction from protein contact maps[J]. Bioinformatics, 2008, 24(10):1313-
1315.
[7] VASSURA M, MARGARA L, DI LENA P, et al. Reconstruction of 3D structures from protein
contact maps[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics
(TCBB), 2008, 5(3):357-367.
[8] VENDRUSCOLO M, KUSSELL E, DOMANY E. Recovery of protein structure from contact
maps[J]. Folding and Design, 1997, 2(5):295-306.
[9] VENDRUSCOLO M, DOKHOLYAN N V, PACI E, et al. Small-world view of the amino acids
that play a key role in protein folding[J]. Physical Review E, 2002, 65(6):061910.
[10] AMITAI G, SHEMESH A, SITBON E, et al. Network analysis of protein structures identifies
functional residues[J]. Journal of molecular biology, 2004, 344(4):1135-1146.
[11] DOKHOLYAN N V, LI L, DING F, et al. Topological determinants of protein folding[J].
Proceedings of the National Academy of Sciences, 2002, 99(13):8637-8641.
[12] KUNDU S. Amino acid network within protein[J]. Physica A: Statistical Mechanics and Its
Applications, 2005, 346(1-2):104-109.
[13] EMERSON I A, AMALA A. Protein contact maps: A binary depiction of protein 3d structures
[J]. Physica A: Statistical Mechanics and its Applications, 2017, 465:782-791.
[14] MICHEL M, HAYAT S, SKWARK M J, et al. PconsFold: improved contact predictions
improve protein models[J]. Bioinformatics, 2014, 30(17):i482-i488.
[15] DI LENA P, VASSURA M, MARGARA L, et al. On the reconstruction of three-dimensional
protein structures from contact maps[J]. Algorithms, 2009, 2(1):76-92.
49蛋白质二级结构单元接触预测算法研究及应用
[16] SKWARK M J, ABDEL-REHIM A, ELOFSSON A. Pconsc: combination of direct information methods and alignments improves contact prediction[J]. Bioinformatics, 2013, 29(14):
1815-1816.
[17] SIMONS K T, KOOPERBERG C, HUANG E, et al. Assembly of protein tertiary structures
from fragments with similar local sequences using simulated annealing and bayesian scoring
functions[J]. Journal of molecular biology, 1997, 268(1):209-225.
[18] ADHIKARI B, BHATTACHARYA D, CAO R, et al. CONFOLD: residue-residue contactguided ab initio protein folding[J]. Proteins: Structure, Function, and Bioinformatics, 2015,
83(8):1436-1449.
[19] BRÜNGER A T, ADAMS P D, CLORE G M, et al. Crystallography & NMR system: A new
software suite for macromolecular structure determination[J]. Acta Crystallographica Section
D: Biological Crystallography, 1998, 54(5):905-921.
[20] ZHU J, WANG S, BU D, et al. Protein threading using residue co-variation and deep learning
[J]. Bioinformatics, 2018, 34(13):i263-i273.
[21] BEJERANO G, PHEASANT M, MAKUNIN I, et al. Ultraconserved elements in the human
genome[J]. Science, 2004, 304(5675):1321-1325.
[22] BRANDEN C I, et al. Introduction to protein structure[M]. Garland Science, 1999.
[23] WIKIPEDIA. 二级结构[EB/OL]. https://zh.wikipedia.org/wiki/.
[24] WANG S, SUN S, LI Z, et al. Accurate De Novo Prediction of Protein Contact Map by
Ultra-Deep Learning Model[J]. PLOS Computational Biology, 2017, 13(1):1-34.
[25] KIM D E, DIMAIO F, YU-RUEI WANG R, et al. One contact for every twelve residues
allows robust and accurate topology-level protein structure modeling[J]. Proteins: Structure,
Function, and Bioinformatics, 2014, 82:208-218.
[26] SKOLNICK J, KOLINSKI A, ORTIZ A R. MONSSTER: a method for folding globular
proteins with a small number of distance restraints1[J]. Journal of molecular biology, 1997,
265(2):217-241.
[27] BANERJEE A, TSAI C L, CHAUDHURY P, et al. FlaF is a β-sandwich protein that anchors
the archaellum in the archaeal cell envelope by binding the S-layer protein[J]. Structure, 2015,
23(5):863-872.
[28] ANDREANI J, SÖDING J. bbcontacts: prediction of β-strand pairing from direct coupling
patterns[J]. Bioinformatics, 2015, 31(11):1729-1737.
[29] YUAN X, BYSTROFF C. Protein contact map prediction[M]//Computational Methods for
Protein Structure Prediction and Modeling. Springer, 2007: 255-277.
[30] BARTH P, SCHONBRUN J, BAKER D. Toward high-resolution prediction and design of
50参考文献
transmembrane helical protein structures[J]. Proceedings of the National Academy of Sciences,
2007, 104(40):15682-15687.
[31] EILERS M, PATEL A B, LIU W, et al. Comparison of helix interactions in membrane and
soluble α-bundle proteins[J]. Biophysical journal, 2002, 82(5):2720-2736.
[32] RUCZINSKI I, KOOPERBERG C, BONNEAU R, et al. Distributions of beta sheets in proteins
with application to structure prediction[J]. Proteins: Structure, Function, and Bioinformatics,
2002, 48(1):85-97.
[33] HILDEBRAND P W, LORENZEN S, GOEDE A, et al. Analysis and prediction of helix–helix
interactions in membrane channels and transporters[J]. Proteins: Structure, Function, and
Bioinformatics, 2006, 64(1):253-262.
[34] GÖBEL U, SANDER C, SCHNEIDER R, et al. Correlated mutations and residue contacts in
proteins[J]. Proteins: Structure, Function, and Bioinformatics, 1994, 18(4):309-317.
[35] MARTIN L, GLOOR G B, DUNN S, et al. Using information theory to search for co-evolving
residues in proteins[J]. Bioinformatics, 2005, 21(22):4116-4124.
[36] YANG Y, FARAGGI E, ZHAO H, et al. Improving protein fold recognition and template-based
modeling by employing probabilistic-based matching between predicted one-dimensional
structural properties of query and corresponding native properties of templates[J]. Bioinformatics, 2011, 27(15):2076-2082.
[37] BURGER L, VAN NIMWEGEN E. Disentangling direct from indirect co-evolution of residues
in protein alignments[J]. PLoS computational biology, 2010, 6(1):e1000633.
[38] SEEMAYER S, GRUBER M, SÖDING J. CCMpred—fast and precise prediction of protein
residue–residue contacts from correlated mutations[J]. Bioinformatics, 2014, 30(21):3128-
3130.
[39] EKEBERG M, LÖVKVIST C, LAN Y, et al. Improved contact prediction in proteins: using
pseudolikelihoods to infer potts models[J]. Physical Review E, 2013, 87(1):012707.
[40] JONES D T, BUCHAN D W, COZZETTO D, et al. PSICOV: precise structural contact
prediction using sparse inverse covariance estimation on large multiple sequence alignments
[J]. Bioinformatics, 2011, 28(2):184-190.
[41] ZHAO Y, KARYPIS G. Prediction of contact maps using support vector machines[J]. International Journal on Artificial Intelligence Tools, 2005, 14(05):849-865.
[42] FARISELLI P, OLMEA O, VALENCIA A, et al. Prediction of contact maps with neural
networks and correlated mutations[J]. Protein engineering, 2001, 14(11):835-843.
[43] POLLASTRI G, BALDI P. Prediction of contact maps by GIOHMMs and recurrent neural
networks using lateral propagation from all four cardinal corners[J]. Bioinformatics, 2002, 18
(suppl_1):S62-S70.
51蛋白质二级结构单元接触预测算法研究及应用
[44] LUND O, FRIMAND K, GORODKIN J, et al. Protein distance constraints predicted by neural
networks and probability density functions.[J]. Protein Engineering, 1997, 10(11):1241-1248.
[45] KASS I, HOROVITZ A. Mapping pathways of allosteric communication in groel by analysis
of correlated mutations[J]. Proteins: Structure, Function, and Bioinformatics, 2002, 48(4):
611-617.
[46] ZHANG H, GAO Y, DENG M, et al. Improving residue–residue contact prediction via lowrank and sparse decomposition of residue correlation matrix[J]. Biochemical and biophysical
research communications, 2016, 472(1):217-222.
[47] ORENGO C A, MICHIE A, JONES S, et al. CATH–a hierarchic classification of protein
domain structures[J]. Structure, 1997, 5(8):1093-1109.
[48] JONES D T, SINGH T, KOSCIOLEK T, et al. MetaPSICOV: combining coevolution methods
for accurate prediction of contacts and long range hydrogen bonding in proteins[J]. Bioinformatics, 2014, 31(7):999-1006.
[49] LO A, CHIU Y Y, RØDLAND E A, et al. Predicting helix–helix interactions from residue
contacts in membrane proteins[J]. Bioinformatics, 2009, 25(8):996-1003.
[50] FUCHS A, KIRSCHNER A, FRISHMAN D. Prediction of helix–helix contacts and interacting helices in polytopic membrane proteins using neural networks[J]. Proteins: Structure,
Function, and Bioinformatics, 2009, 74(4):857-871.
[51] YANG J, JANG R, ZHANG Y, et al. High-accuracy prediction of transmembrane inter-helix
contacts and application to gpcr 3d structure modeling[J]. Bioinformatics, 2013, 29(20):
2579-2587.
[52] WANG X F, CHEN Z, WANG C, et al. Predicting residue-residue contacts and helix-helix interactions in transmembrane proteins using an integrative feature-based random forest approach
[J]. PloS one, 2011, 6(10):e26767.
[53] HÖNIGSCHMID P, FRISHMAN D. Accurate prediction of helix interactions and residue
contacts in membrane proteins[J]. Journal of structural biology, 2016, 194(1):112-123.
[54] BALDI P, POLLASTRI G, ANDERSEN C A, et al. Matching protein beta-sheet partners
by feedforward and recurrent neural networks[C]//Proceedings of the 2000 Conference on
Intelligent Systems for Molecular Biology (ISMB00), La Jolla, CA. AAAI Press, 2000:
25-36.
[55] CHENG J, BALDI P. Three-stage prediction of protein β-sheets by neural networks, alignments
and graph algorithms[J]. Bioinformatics, 2005, 21(suppl_1):i75-i84.
[56] SAVOJARDO C, FARISELLI P, MARTELLI P L, et al. Bcov: a method for predicting
β-sheet topology using sparse inverse covariance estimation and integer programming[J].
Bioinformatics, 2013, 29(24):3151-3157.
52参考文献
[57] XIONG D, MAO W, GONG H. Predicting the helix-helix interactions from correlated residue
mutations[J]. Proteins: Structure, Function, and Bioinformatics, 2017, 85(12):2162-2169.
[58] WANG S, PENG J, MA J, et al. Protein secondary structure prediction using deep convolutional
neural fields[J]. Scientific reports, 2016, 6:18962.
[59] DAMON J. Properties of ridges and cores for two-dimensional images[J]. Journal of Mathematical Imaging and Vision, 1999, 10(2):163-174.
[60] RODRÍGUEZ J J, MAUDES J. Boosting recombined weak classifiers[J]. Pattern Recognition
Letters, 2008, 29(8):1049-1059.
[61] TAYLOR W R, JONES D T, SADOWSKI M I. Protein topology from predicted residue
contacts[J]. Protein Science, 2012, 21(2):299-305.
[62] HE K, GKIOXARI G, DOLLÁR P, et al. Mask r-cnn[C]//Computer Vision (ICCV), 2017
IEEE International Conference on. IEEE, 2017: 2980-2988.
[63] HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[J]. CoRR,
2015, abs/1512.03385.
[64] LIN T Y, DOLLÁR P, GIRSHICK R B, et al. Feature Pyramid Networks for Object Detection.
[C]//The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.
[65] REN S, HE K, GIRSHICK R, et al. Faster r-cnn: Towards real-time object detection with region
proposal networks[C]//Advances in neural information processing systems. 2015: 91-99.
[66] MCGUFFIN L J, BRYSON K, JONES D T. The PSIPRED protein structure prediction server
[J]. Bioinformatics, 2000, 16(4):404-405.
[67] KOZMA D, SIMON I, TUSNADY G E. Pdbtm: Protein data bank of transmembrane proteins
after 8 years[J]. Nucleic acids research, 2012, 41(D1):D524-D529.
[68] TUSNADY G E, KALMAR L, SIMON I. TOPDB: topology data bank of transmembrane
proteins[J]. Nucleic acids research, 2007, 36(suppl_1):D234-D239.
[69] LOMIZE M A, LOMIZE A L, POGOZHEVA I D, et al. OPM: orientations of proteins in
membranes database[J]. Bioinformatics, 2006, 22(5):623-625.
53蛋白质二级结构单元接触预测算法研究及应用
54

posted on 2021-04-30 10:07  黑暗尽头的超音速炬火  阅读(250)  评论(0编辑  收藏  举报