JadenFK
哪有什么岁月静好,只是有人替我们负重前行! http://JadenFK.github.io
随笔 - 50,  文章 - 1,  评论 - 9,  阅读 - 70280

转眼读研一年了,开题也开了,方向也定了,大方向就是NLP,然而从一开始的上课、做项目开题什么的(自己也比较贪玩,以前不打游戏,结果王者上瘾了),到现在对NLP是一知半解,不对,半解都没有半解,然后时间是不等人的,学制两年,也该考虑毕业条件了(一篇SCI或两篇EI),很难,用一句网上流行的话:我太难了。所以卸载王者,下定决心学习NLP,发个文本分类的文章,所以从文本分类学习开始吧。至到现在,我删除王者已有半月有余,但是对NLP还是那个状态,心情浮躁,再加上和同届同学已经有了差距,还有不知道怎么入门(给了一头猪,不知道从哪啃,从哪啃都感觉难,这更加浮躁了,心里着急但是还学不了),最重要的是数学基础差。奈何不能心里有个声音在呐喊,不能一直这样,所以决心从这篇博客作为开始,好好学好好做。先记录一下自己目前所知道的有关NLP的知识,纯基于自己知道的,不百度。

一、NLP之文本分类的大概过程

  准备数据集:要么选公共数据集(先辈们已经给规划好了,打好了标签或者用文件夹表示标签,文件夹里放的是好多.txt文件(所有.txt文件都属于该类),要么是一个.txt文件,里面每行属于一类,行头为类别)

  数据预处理:分词、去停用词,去干扰(标点符号),向量化(word2vec、BoW、One-hot、N-gram)

  分类模型:CNN、LSTM、Bi-lstm等

二、我会多少

  找公共数据集、自己的数据集打标签(确定了分类后)

  分词(用分词工具包:jieba、pkuseg等)

三、一些概念理解

  分词:就是把文本分成一个一个词,如“我是郭心全,来自山东。”分为:我  是  郭心全   ,来自  山东  。

  去停用词:就是删除没用的词。根据停用词词典(可以在网上找或自己做),删除分完的文本中的停用词 

  词性标注():把处理好的文本中每个词给其后面加上/,然后加上所属词性(n,v,adj,adv,preb等)

  命名实体识别(NER):就是找出一些实体:如人名、地名、企业名、时间等

  语义分析:就是分析句子,如某个词在另一个词之前或之后什么的

  dropout:这还是我昨天刚看的。就是为了防止过拟合用的,就是数据较少,参数较多,容易在训练集上效果好,在测试集上效果差。主要用在前馈网络中,以一定的概率来隐藏一些神经元,多次来回训练,以降低过拟合。

  召回率:仅知道概念(后面学)

  f值:仅知道概念(后面学)

  卷积:用一个滤波器(就是一个矩阵)。。。。。。这个原理真懂不知道咋说,可以百度一下,原理解释好多

  池化:和卷积差不多,这个也有一个滑动窗口(类似于一个filter)

  代码:仅会一些基本的python

  框架:TensorFlow、pytorch、numpy、sklears、matplot(好像是这么拼写)、pandas等,但是没怎么用过

刚刚看到的一个CSDN博主的学习记录,博客是:https://blog.csdn.net/Dacc123/article/details/82461363

往后我觉得我还会找类似的博客,跟着博主们学习,在此感谢了

 加一个好的网页:https://www.biaodianfu.com/category/bigdata

准备怎么做:跟着博主:https://www.cnblogs.com/jiangxinyang/p/10207273.html 完成文本分类实战,伴随着每一个博客的实现,把其中概念、模型摸索一遍                            

 

 

 

posted on   郭心全  阅读(258)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列:基于图像分类模型对图像进行分类
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
阅读排行:
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 25岁的心里话
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5
是我,还记得我吗? 快来逗我玩吧!
点击右上角即可分享
微信分享提示