GJS
少年,奋起吧。
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_selection import SelectKBest, chi2
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn import metrics
from text.textpredict import *
from sklearn.cross_validation import *

def chi22():
    train_words=["急需 钱用 不用 出售 如图 价值 千多 便宜 出售 出售 急 ",
                 "读 读 重复 读好输 不变 绿 求高人 指点迷津 ",
                 "诚召搛只呆家小时工,全职妈妈、在校学生、在家待业者、上班族、游戏者皆可做!每天5",
                 "发福利了 火熱找小莳工,每天在綫2--3小莳,莳涧地點没限制,薪资鈤结80--150/",
                 "急招小时工,每天在綫2--3小拭,时间地点没限制,薪资日结80--150/天,适 急招小时工,每天在綫2--3小拭,时间地点没限制,薪资日结80--150/天,适合学生党,手机党,上班族,有空闲时间者,有興趣缪系,QQ(937117723)咨询,此处不回!!",
                 "发福利来 火熱找小莳工,每天在綫2--3小莳,莳涧地點没限制,薪资鈤结80--150/",
                 "	读 不好 呜呜 ","这句 话 总是 知道 连读 ","求 师傅 交 口语 求有 耐心 老师 基础 学 ",
                 "听到 读 "
                 ]
    train_tags=[1,0,1,1,1,1,0,0,0,0]

    """
    ##就提取了词频CountVectorizer
    count_v1 = CountVectorizer(stop_words=None, max_df=0.5)
    counts_train = count_v1.fit_transform(train_words)
    ##卡方检验chi,配合selectkbest 对特征进行选择
    chi= SelectKBest(chi2,10)
    mychi2 = chi.fit(counts_train, train_tags)
    hi2_train = mychi2.transform(counts_train)
    clf = MultinomialNB(alpha=0.01)
    clf.fit(hi2_train, np.asarray(train_tags))
    priediced = cross_val_predict(clf, hi2_train, train_tags)
    print metrics.confusion_matrix(train_tags, priediced)
    """
    ##tf-idf
    Tfidf = TfidfVectorizer()
    tfidf_train = Tfidf.fit_transform(train_words)
    clf = MultinomialNB(alpha=0.01)
    clf.fit(tfidf_train, np.asarray(train_tags))
    priediced = cross_val_predict(clf, tfidf_train, train_tags)
    print metrics.confusion_matrix(train_tags, priediced)



    #print hi2_train


chi22()

  

posted on 2016-07-21 13:37  GJS Blog  阅读(720)  评论(0编辑  收藏  举报