公众号:架构师与哈苏
关注公众号进入it交流群! 公众号:架构师与哈苏 不定时都会推送一些实用的干货。。。

消费者弄丢数据

唯一可能导致消费者弄丢数据的情况,就是说,你那个消费到了这个消息,然后消费者那边自动提交了offset,让kafka以为你已经消费好了这个消息,其实你刚准备处理这个消息,你还没处理,你自己就挂了,此时这条消息就丢咯。

这不是一样么,大家都知道kafka会自动提交offset,那么只要关闭自动提交offset,在处理完之后自己手动提交offset,就可以保证数据不会丢。但是此时确实还是会重复消费,比如你刚处理完,还没提交offset,结果自己挂了,此时肯定会重复消费一次,自己保证幂等性就好了。

kafka弄丢了数据

这块比较常见的一个场景,就是kafka某个broker宕机,然后重新选举partition的leader时。大家想想,要是此时其他的follower刚好还有些数据没有同步,结果此时leader挂了,然后选举某个follower成leader之后,他不就少了一些数据

生产环境也遇到过,我们也是,之前kafka的leader机器宕机了,将follower切换为leader之后,就会发现说这个数据就丢了

所以此时一般是要求起码设置如下3个参数:

  • 给这个topic设置replication.factor参数:这个值必须大于1,要求每个partition必须有至少2个副本
  • 在kafka服务端设置min.insync.replicas参数:这个值必须大于1,这个是要求一个leader至少感知到有至少一个follower还跟自己保持联系,没掉队,这样才能确保leader挂了还有一个follower吧
  • 在producer端设置acks=all; 这个是要求每条数据,必须是写入所有replica之后,才能认为是写成功了
  • 在producer端设置retries=MAX(很大很大很大的一个值,无限次重试的意思):这个是要求一旦写入失败,就无线重试,卡在这里了

我们生产环境就是按照上述要求配置的,这样配置之后,至少在kafka broker端就可以保证在leader所在broker发生故障,进行leader切换时,数据不会丢失

posted on 2021-11-10 15:40  公众号/架构师与哈苏  阅读(149)  评论(0编辑  收藏  举报