yolov3-voc.cfg文件
[net] # Testing #测试模式 batch=1 subdivisions=1 # Training #训练模式 每次前向图片的数目=batch/subdivisions # batch=64 #关于batch与subdivision: #在训练输出中,训练迭代包括8组,这些batch样本又被平均分成subdivision=8次送入网络参与训练,以减轻内存占用的压力 # subdivisions=16 #batch越大,训练效果越好,subdivision越大,占用内存压力越小 width=416 #网络输入的宽、高、通道数 height=416 channels=3 #这三个参数中,要求width==height, 并且为32的倍数,大分辨率可以检测到更加细小的物体,从而影响precision momentum=0.9 #动量,影响梯度下降到最优的速度,一般默认0.9 decay=0.0005 #权重衰减正则系数,防止过拟合 angle=0 #旋转角度,从而生成更多训练样本 saturation = 1.5 #调整饱和度,从而生成更多训练样本 exposure = 1.5 #调整曝光度,从而生成更多训练样本 hue=.1 #调整色调,从而生成更多训练样本 learning_rate=0.001 #学习率 ,决定了权值更新的速度,学习率大,更新的就快,但太快容易越过最优值,而学习率太小又更新的慢,效率低, #一般学习率随着训练的进行不断更改,先高一点,然后慢慢降低,一般在0.01--0.001 burn_in=1000 #学习率控制的参数,在迭代次数小于burn_in时,其学习率的更新有一种方式,大于burn_in时,才采用policy的更新方式 max_batches = 50200 #迭代次数,1000次以内,每训练100次保存一次权重,1000次以上,每训练10000次保存一次权重 policy=steps #学习率策略,学习率下降的方式 steps=40000,45000 #学习率变动步长 scales=.1,.1 #学习率变动因子 #如迭代到40000次时,学习率衰减十倍,45000次迭代时,学习率又会在前一个学习率的基础上衰减十倍 [convolutional] batch_normalize=1 #BN filters=32 #卷积核数目 size=3 #卷积核尺寸 stride=1 #做卷积运算的步长 pad=1 #如果pad为0,padding由 padding参数指定。 #如果pad为1,padding大小为size/2,padding应该是对输入图像左边缘拓展的像素数量 activation=leaky #激活函数类型 [shortcut] from=-3 activation=linear #借鉴了resnet网络的shortcut方式可以加深网络 [convolutional] size=1 stride=1 pad=1 filters=75 #每一层前的最后一个卷积层中的 filters=num(yolo层个数)*(classes+5) ,5的意义是5个坐标,论文中的tx,ty,tw,th,to activation=linear [yolo] mask = 6,7,8#使用anchor时使用前三个尺寸 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 #anchors是可以事先通过cmd指令计算出来的,是和图片数量,width,height以及cluster(就是下面的num的值, #即想要使用的anchors的数量)相关的预选框,可以手工挑选,也可以通过k-means算法从训练样本中学出 classes=20 #类别 num=9 #每个grid cell预测几个box,和anchors的数量一致。当想要使用更多anchors时需要调大num,且如果调大num后训练时Obj趋近0的话可以尝试调大object_scale jitter=.3 #通过抖动来防止过拟合,jitter就是crop的参数 ignore_thresh = .5 #ignore_thresh 指得是参与计算的IOU阈值大小。当预测的检测框与ground true的IOU大于ignore_thresh的时候,参与loss的计算,否则,检测框的不参与损失计算。 #目的是控制参与loss计算的检测框的规模,当ignore_thresh过于大,接近于1的时候,那么参与检测框回归loss的个数就会比较少,同时也容易造成过拟合; #而如果ignore_thresh设置的过于小,那么参与计算的会数量规模就会很大。同时也容易在进行检测框回归的时候造成欠拟合。 #参数设置:一般选取0.5-0.7之间的一个值,之前的计算基础都是小尺度(13*13)用的是0.7,(26*26)用的是0.5。这次先将0.5更改为0.7。 truth_thresh = 1 random=1 #如果显存小,设置为0,关闭多尺度训练,random设置成1,可以增加检测精度precision,每次迭代图片大小随机从320到608,步长为32,如果为0,每次训练大小与输入大小一致
参考地址:https://www.cnblogs.com/shierlou-123/p/11152623.html
https://blog.csdn.net/qq_43211132/article/details/88679979