8&9.聚合运算&索引
摘要:import numpy as np L = np.random.random(100) L array([0.14707817, 0.51538313, 0.50141282, 0.63780797, 0.51842999, 0.89482605, 0.24431981, 0.43637874,
阅读全文
posted @
2022-04-03 21:00
饮冰未
阅读(253)
推荐(0) 编辑
7.numpy.array中的计算
摘要:numpy.array中的计算 给定一个向量,让向量中的 数乘以2 a = (0, 1, 2), a * 2 = (0, 2 ,4) n = 10 L = [i for i in range(n)] L [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] # 直接用L*2得到的结果是两个L
阅读全文
posted @
2022-04-03 11:04
饮冰未
阅读(115)
推荐(0) 编辑
5-9.scikit-learn中的线性回归问题
摘要:import numpy as np import matplotlib.pyplot as plt from sklearn import datasets boston_data = datasets.load_boston() X = boston_data.data y = boston_d
阅读全文
posted @
2022-04-03 10:41
饮冰未
阅读(49)
推荐(0) 编辑
18.网格搜索
摘要:import numpy as np from sklearn import datasets digits = datasets.load_digits() X = digits.data y = digits.target from sklearn.model_selection import
阅读全文
posted @
2022-04-03 10:40
饮冰未
阅读(146)
推荐(0) 编辑
5-8.实现多元线性回归
摘要:import numpy as np import matplotlib.pyplot as plt from sklearn import datasets boston_data = datasets.load_boston() X = boston_data.data y = boston_d
阅读全文
posted @
2022-04-03 10:24
饮冰未
阅读(78)
推荐(0) 编辑
5-5衡量回归算法的标准
摘要:衡量回归算法的标准 import numpy as np import matplotlib.pyplot as plt from sklearn import datasets 波士顿房产数据 boston_market = datasets.load_boston() print(boston_
阅读全文
posted @
2022-04-02 19:58
饮冰未
阅读(54)
推荐(0) 编辑
5-3.简单的线性回归
摘要:import numpy as np import matplotlib.pyplot as plt x = np.array([1., 2., 3., 4., 5.]) y = np.array([1., 3., 2., 3., 5.]) plt.scatter(x, y) plt.axis([0
阅读全文
posted @
2022-04-02 19:42
饮冰未
阅读(57)
推荐(0) 编辑
5&6.numpy数组的基本操作
摘要:import numpy as np x = np.arange(10) x array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) X = np.arange(15).reshape(3, 5) X array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8,
阅读全文
posted @
2022-04-01 22:44
饮冰未
阅读(265)
推荐(0) 编辑