import torch
import random
import matplotlib.pyplot as plt
from torch.autograd import Variable


def rbf_kernel(source, target, kernel_mul=2.0, kernel_num=5, fix_sigma=None):
    """
    将源域数据和目标域数据转化为核矩阵,即上文中的K
    Params:
        source: 源域数据(n * len(x))
        target: 目标域数据(m * len(y))
        kernel_mul:
        kernel_num: 取不同高斯核的数量
        fix_sigma: 不同高斯核的sigma值
    Return:
        sum(kernel_val): 多个核矩阵之和
    """
    n_samples = int(source.size()[0]) + int(target.size()[0])  # 求矩阵的行数,一般source和target的尺度是一样的,这样便于计算
    total = torch.cat([source, target], dim=0)  # 将source,target按列方向合并
    # 将total复制(n+m)份
    total0 = total.unsqueeze(0).expand(int(total.size(0)), int(total.size(0)), int(total.size(1)))
    # 将total的每一行都复制成(n+m)行,即每个数据都扩展成(n+m)份
    total1 = total.unsqueeze(1).expand(int(total.size(0)), int(total.size(0)), int(total.size(1)))
    # 求任意两个数据之间的和,得到的矩阵中坐标(i,j)代表total中第i行数据和第j行数据之间的l2 distance(i==j时为0)
    L2_distance = ((total0 - total1) ** 2).sum(2)
    # 调整高斯核函数的sigma值
    if fix_sigma:
        bandwidth = fix_sigma
    else:
        bandwidth = torch.sum(L2_distance.data) / (n_samples ** 2 - n_samples)
    # 以fix_sigma为中值,以kernel_mul为倍数取kernel_num个bandwidth值(比如fix_sigma为1时,得到[0.25,0.5,1,2,4]
    bandwidth /= kernel_mul ** (kernel_num // 2)
    bandwidth_list = [bandwidth * (kernel_mul ** i) for i in range(kernel_num)]
    # 高斯核函数的数学表达式
    kernel_val = [torch.exp(-L2_distance / bandwidth_temp) for bandwidth_temp in bandwidth_list]
    # 得到最终的核矩阵
    return sum(kernel_val)  # /len(kernel_val)


def mmd_rbf(source, target, kernel_mul=2.0, kernel_num=5, fix_sigma=None):
    """
    计算源域数据和目标域数据的MMD距离
    Params:
        source: 源域数据(n * len(x))
        target: 目标域数据(m * len(y))
        kernel_mul:
        kernel_num: 取不同高斯核的数量
        fix_sigma: 不同高斯核的sigma值
    Return:
        loss: MMD loss
    """
    batch_size = int(source.size()[0])  # 一般默认为源域和目标域的batchsize相同
    kernels = rbf_kernel(source, target,
                         kernel_mul=kernel_mul, kernel_num=kernel_num, fix_sigma=fix_sigma)
    # 根据式(3)将核矩阵分成4部分
    XX = kernels[:batch_size, :batch_size]
    YY = kernels[batch_size:, batch_size:]
    XY = kernels[:batch_size, batch_size:]
    YX = kernels[batch_size:, :batch_size]
    loss = torch.mean(XX + YY - XY - YX)
    return loss  # 因为一般都是n==m,所以L矩阵一般不加入计算


sample_size = 500
buckets = 50

# 第一种分布:对数正态分布,得到一个中值为mu,标准差为sigma的正态分布。mu可以取任何值,sigma必须大于零。
plt.subplot(1, 2, 1)
plt.xlabel("random.lognormalvariate")
mu = -0.6
sigma = 0.15  # 将输出数据限制到0-1之间
res1 = [random.lognormvariate(mu, sigma) for _ in range(1, sample_size)]
plt.hist(res1, buckets)

# 第二种分布:beta分布。参数的条件是alpha 和 beta 都要大于0, 返回值在0~1之间。
plt.subplot(1, 2, 2)
plt.xlabel("random.betavariate")
alpha = 1
beta = 10
res2 = [random.betavariate(alpha, beta) for _ in range(1, sample_size)]
plt.hist(res2, buckets)
plt.show()


# 两种分布有明显的差异,下面从两个方面用MMD来量化这种差异:
# 1. 分别从不同分布取两组数据(每组为10*500)

# 参数值见上段代码
# 分别从对数正态分布和beta分布取两组数据
diff_1 = []
for i in range(10):
    diff_1.append([random.lognormvariate(mu, sigma) for _ in range(1, sample_size)])

diff_2 = []
for i in range(10):
    diff_2.append([random.betavariate(alpha, beta) for _ in range(1, sample_size)])

X = torch.Tensor(diff_1)
Y = torch.Tensor(diff_2)
X,Y = Variable(X), Variable(Y)
print(mmd_rbf(X,Y))

# 2. 分别从相同分布取两组数据(每组为10*500)

# 参数值见以上代码
# 从对数正态分布取两组数据
same_1 = []
for i in range(10):
    same_1.append([random.lognormvariate(mu, sigma) for _ in range(1, sample_size)])

same_2 = []
for i in range(10):
    same_2.append([random.lognormvariate(mu, sigma) for _ in range(1, sample_size)])

X = torch.Tensor(same_1)
Y = torch.Tensor(same_2)
X,Y = Variable(X), Variable(Y)
print(mmd_rbf(X,Y))
posted on 2022-03-18 14:57  饮冰未  阅读(1718)  评论(2编辑  收藏  举报