同这个需求一样,用spark sql的方式实现(相对来说简单一点)

https://www.cnblogs.com/7749ha/p/12909115.html

package sparksql;
import org.apache.spark.SparkContext;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.api.java.function.Function;

import java.util.ArrayList;
import java.util.List;

/**
 * # _*_ coding:utf-8 _*_
 * # Author:xiaoshubiao
 * # Time : 2020/5/15 16:44
 **/
public class sparksql_test {
    public static void main(String[] args) throws Exception{
        SparkSession spark = SparkSession
                .builder()
                .appName("Java Spark SQL basic example")
                .getOrCreate();
        SparkContext sc = spark.sparkContext();
        JavaRDD<String> stringJavaRDD = sc.textFile("D:/tmp/rizhi.txt", 1).toJavaRDD();
        // 创建列
        String schemaString = "ts province city user ad";
        List<StructField> fields = new ArrayList<>();
        for(String fieldname:schemaString.split(" ")){
            fields.add(DataTypes.createStructField(fieldname,DataTypes.StringType,true));
        }
        // 添加列
        StructType structType = DataTypes.createStructType(fields);
        JavaRDD<Row> rowRDD = stringJavaRDD.map(
                (Function<String, Row>) record -> {
            String[] attributes = record.split(" ");
            return RowFactory.create(attributes[0], attributes[1].trim(),attributes[2],attributes[3],attributes[4]);
        });
        Dataset<Row> dataFrame = spark.createDataFrame(rowRDD, structType);
        // 显示查看
        dataFrame.show();
        // 创建临时view
        dataFrame.createTempView("people");
        // sql处理需求
        String sql = "select * from (select province,ad,c,row_number() over(partition by province order by c desc) as ind from (select province,ad,count(*) as c from people group by province,ad)t)t where ind <3";
        spark.sql(sql).show();


    }
}

 

posted on 2020-05-18 14:33  7749ha  阅读(343)  评论(0编辑  收藏  举报