折线图能直观的看出数据的变化

import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

# 折线图 两地的气温变化
x = range(2, 26, 2)
y_1 = [15, 13, 14.5, 17, 20, 25, 26, 26, 24, 22, 18, 15]
y_2 = [18, 15, 16, 17, 23, 25, 26, 27, 22, 27, 18, 18]
plt.figure(figsize=(12, 8), dpi=80)
plt.plot(x, y_1, label="广州")
plt.plot(x, y_2, label="苏州")
plt.legend(loc='best')
plt.xlabel("时间")
plt.ylabel("温度")
plt.title("天气")
plt.savefig("./sig.png")
plt.show()

效果如下:

 

 

 

散点图反映出数据的分布

import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']
# 散点图
""" 三月份与十月份的天气"""
y_3 = [11, 17, 11, 12, 11, 12, 6, 6, 7, 8, 9, 12, 15, 14, 17, 18, 21, 16, 17, 21, 14, 15, 15, 15, 18, 21, 22, 22, 22,
       23, 23]
y_10 = [26, 27, 28, 19, 21, 17, 16, 19, 18, 20, 19, 22, 23, 17, 20, 21, 22, 17, 11, 15, 5, 13, 17, 10, 11, 12, 12, 11,
        12, 12, 6]

x_3 = range(1, 32)
x_10 = range(51, 82)

# 设置图形大小
plt.figure(figsize=(20, 8), dpi=80)

plt.scatter(x_3, y_3, label="3月份")
plt.scatter(x_10, y_10, label="10月份")

# 调整x轴刻度
_x = list(x_3) + list(x_10)
_xtick_labels = ["3月{}日".format(i) for i in x_3]
_xtick_labels += ["10月{}日".format(i - 50) for i in x_10]
plt.xticks(_x[::3], _xtick_labels[::3], rotation=45)

# 添加图例
plt.legend(loc="upper left")

# 添加描述信息
plt.xlabel("时间")
plt.ylabel("温度")
plt.title("标题")

# 展示
plt.show()

效果如下:

 

 

 

 

 

 

 

条形统计图的特点:

  1. 能够使人们一眼看出各个数据的大小。
  2. 易于比较数据之间的差别。
  3. 能清楚的表示出数量的多少。
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']

# 绘制条形图(竖型)
x = ["战狼2", "速度与激情8", "功夫瑜伽", "西游伏妖篇", "变形金刚5\n:最后的骑士", "摔跤吧!爸爸", "加勒比海盗5\n:死无对证", "金刚:骷髅岛", "极限特工\n:终极回归", "生化危机6\n:终章",
     "乘风破浪", "神偷奶爸3", "智取威虎山", "大闹天竺", "金刚狼3\n:殊死一战", "蜘蛛侠\n:英雄归来", "悟空传", "银河护卫队2", "情圣", "新木乃伊"]
y = [56.01, 26.94, 17.53, 16.49, 15.45, 12.96, 11.8, 11.61, 11.28, 11.12, 10.49, 10.3, 8.75, 7.55, 7.32, 6.99, 6.88,
     6.86, 6.58, 6.23]

plt.figure(figsize=(20,8),dpi=80)
plt.bar(range(len(x)),y,width=0.3)

#设置字符串到X轴
plt.xticks(range(len(x)),x,rotation = 90)

plt.show()

效果如下:

 

 

 

import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']

# 绘制条形图(横型)
x = ["战狼2", "速度与激情8", "功夫瑜伽", "西游伏妖篇", "变形金刚5:最后的骑士", "摔跤吧!爸爸", "加勒比海盗5:死无对证", "金刚:骷髅岛", "极限特工:终极回归", "生化危机6:终章",
     "乘风破浪", "神偷奶爸3", "智取威虎山", "大闹天竺", "金刚狼3:殊死一战", "蜘蛛侠:英雄归来", "悟空传", "银河护卫队2", "情圣", "新木乃伊"]
y = [56.01, 26.94, 17.53, 16.49, 15.45, 12.96, 11.8, 11.61, 11.28, 11.12, 10.49, 10.3, 8.75, 7.55, 7.32, 6.99, 6.88,
     6.86, 6.58, 6.23]

plt.figure(figsize=(20, 8), dpi=80)
plt.barh(range(len(x)), y, height=0.3, color = "orange")

# 设置字符串到X轴
plt.yticks(range(len(x)), x)

#绘制网格
plt.grid(alpha=0.3)

plt.show()

效果如下:

 

 

 

import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']

# 绘制多次条形图,电影三天的票房
a = ["猩球崛起3:终极之战", "敦刻尔克", "蜘蛛侠:英雄归来", "战狼2"]
b_16 = [15754, 312, 4497, 319]
b_15 = [12357, 156, 2045, 168]
b_14 = [2358, 399, 2358, 362]

bar_width = 0.2

x_14 = list(range(len(a)))
x_15 = [i + bar_width for i in x_14]
x_16 = [i + bar_width * 2 for i in x_14]

# 设置图形大小
plt.figure(figsize=(20, 8), dpi=80)

plt.bar(range(len(a)), b_14, width=bar_width, label="9月14日")
plt.bar(x_15, b_15, width=bar_width, label="9月15日")
plt.bar(x_16, b_16, width=bar_width, label="9月15日")

# 设置图例
plt.legend()

# 设置X轴刻度
plt.xticks(x_15, a)

plt.show()

效果如下:

 

 

 

 

 

 

绘制直方图

import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']
# 绘制直方图 250部电影的时长 未经过统计的数据可绘制直方图
data = [172, 145, 175, 138, 161, 108, 108, 187, 140, 121, 158, 132, 150, 117, 181, 199, 185, 176, 113, 106, 169, 109,
        134, 132, 150, 187, 166, 104, 104, 128, 148, 112, 176, 178, 148, 114, 136, 147, 126, 165, 163, 136, 111, 157,
        196, 134, 180, 153, 175, 157, 104, 107, 156, 124, 120, 128, 142, 125, 104, 133, 183, 173, 180, 155, 164, 130,
        168, 195, 151, 131, 149, 199, 197, 102, 110, 144, 125, 191, 112, 176, 117, 110, 178, 198, 100, 141, 196, 106,
        106, 141, 114, 148, 167, 109, 166, 158, 138, 156, 169, 150, 186, 177, 144, 135, 135, 117, 181, 118, 189, 195,
        153, 177, 113, 165, 119, 177, 151, 132, 189, 114, 116, 140, 199, 164, 142, 172, 119, 160, 101, 152, 196, 191,
        189, 149, 133, 184, 133, 168, 174, 140, 116, 145, 117, 188, 124, 105, 179, 125, 136, 143, 143, 119, 144, 186,
        142, 158, 125, 190, 168, 183, 188, 123, 124, 187, 197, 104, 190, 121, 170, 172, 175, 158, 194, 155, 126, 109,
        182, 143, 198, 142, 119, 184, 100, 119, 182, 120, 185, 147, 148, 152, 158, 105, 148, 172, 179, 112, 131, 166,
        133, 120, 154, 198, 191, 186, 113, 141, 138, 168, 143, 145, 107, 141, 101, 150, 128, 150, 169, 103, 151, 112,
        155, 142, 164, 174, 149, 103, 169, 119, 163, 146, 149, 162, 196, 105, 192, 152, 195, 120, 198, 142, 100, 114,
        122, 130, 200, 166, 168, 107, 197, 120]

# 计算组距
d = 5
print(max(data) - min(data))
num_bins = (max(data) - min(data)) // d  # 整除 要不然会出现错位

plt.figure(figsize=(20, 8), dpi=80)

# num_bins平均分组,要是划分的组距不同,可以传一个组距的列表
# plt.hist(data, num_bins) # 频数分布直方图
plt.hist(data, num_bins, density=True)  # 绘制频率分布直方图

# 设置x轴刻度
plt.xticks(range(min(data), max(data) + d, d))

plt.grid()
plt.show()

频率直方图效果如下:

 

 

 

 

import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']
# 经过整理的数据想要绘制成直方图,用条形图代替

# x轴的数据
interval = [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 60, 90]
# 组距
width = [5, 5, 5, 5, 5, 5, 5, 5, 5, 15, 30, 60]
quantity = [836, 2737, 3723, 3926, 3596, 1438, 3273, 642, 824, 613, 215, 47]

plt.figure(figsize=(20, 8), dpi=80)
plt.bar(range(len(interval)), quantity, width=1)

#设置x轴刻度
_x = [i-0.5 for i in range(len(interval)+ 1)]
_xtick_labels = interval + [150] #最后的一个间距是60, 90+60
plt.xticks(_x,_xtick_labels)

plt.grid()
plt.show()

效果如下:

 

 

 

更多绘图参考:https://matplotlib.org/stable/gallery/index.html

 

posted on 2021-04-09 22:31  -豪-  阅读(133)  评论(0编辑  收藏  举报