一个无向连通网络,去掉一个边集可以使其变成两个连通分量则这个边集就是割集;最小割集当然就权和最小的割集。
可以用最小切割最大流定理:
1.min=MAXINT,确定一个源点
2.枚举汇点
3.计算最大流,并确定当前源汇的最小割集,若比min小更新min
4.转到2直到枚举完毕
5.min即为所求输出min
不难看出复杂度很高:枚举汇点要O(n),最短增广路最大流算法求最大流是O((n^2)m)复杂度,在复杂网络中O(m)=O(n^2),算法总复杂度就是O(n^5);哪怕采用最高标号预进流算法求最大流O((n^2)(m^0.5)),算法总复杂度也要O(n^4)
所以用网络流算法求解最小割集复杂度不会低于O(n^4)。
---------
prim算法不仅仅可以求最小生成树,也可以求“最大生成树”。最小割集Stoer-Wagner算法就是典型的应用实例。
求解最小割集普遍采用Stoer-Wagner算法,不提供此算法证明和代码,只提供算法思路:
1.min=MAXINT,固定一个顶点P
2.从点P用“类似”prim的s算法扩展出“最大生成树”,记录最后扩展的顶点和最后扩展的边
3.计算最后扩展到的顶点的切割值(即与此顶点相连的所有边权和),若比min小更新min
4.合并最后扩展的那条边的两个端点为一个顶点(当然他们的边也要合并,这个好理解吧?)
5.转到2,合并N-1次后结束
6.min即为所求,输出min
prim本身复杂度是O(n^2),合并n-1次,算法复杂度即为O(n^3)
如果在prim中加堆优化,复杂度会降为O((n^2)logn)
这个Stoer-Wagner算法可以参见这篇paper(http://docs.google.com/fileview?id=0BwxLvD9mcDNtMjk3MWVkMTAtZjMzNi00ZWE3LTkxYjQtYTQwNzcyZTk3Njk2&hl=en), 其核心思想是迭代缩小规模, 算法基于这样一个事实:
对于图中任意两点s和t, 它们要么属于最小割的两个不同集中, 要么属于同一个集.
如果是后者, 那么合并s和t后并不影响最小割. 基于这么个思想, 如果每次能求出图中某两点之间的最小割, 然后更新答案后合并它们再继续求最小割, 就得到最终答案了. 算法步骤如下:
1. 设最小割cut=INF, 任选一个点s到集合A中, 定义W(A, p)为A中的所有点到A外一点p的权总和.
2. 对刚才选定的s, 更新W(A,p)(该值递增).
3. 选出A外一点p, 且W(A,p)最大的作为新的s, 若A!=G(V), 则继续2.
4. 把最后进入A的两点记为s和t, 用W(A,t)更新cut.
5. 新建顶点u, 边权w(u, v)=w(s, v)+w(t, v), 删除顶点s和t, 以及与它们相连的边.
6. 若|V|!=1则继续1.
看起来很简单, 每次像做最大生成树一样选最大"边"(注意, 这里其实不是边, 而是已经累计的权值之和, 就当是加权的度好了), 然后把最后进入的两个点缩到一块就可以了. 合并点最多有n-1次, 而不加堆优化的prim是O(n^2)的, 所以最终复杂度O(n^3), 要是你有心情敲一大坨代码, 还可以在稀疏图上用Fibonacci Heap优化一下, 不过网上转了一圈, 大多都是说能用Fibonacci Heap优化到怎样怎样的复杂度, 真正能自己写出来的恐怕也没几个, 看看uoregon(俄勒冈大学)的一大坨代码就有点寒. (http://resnet.uoregon.edu/~gurney_j/jmpc/fib.html)
特别注意几个地方, 网上的好几个Stoer-Wagner版本都存在一些小错误:
1. 算法在做"最大生成树"时更新的不是普通意义上的最大边, 而是与之相连的边的权值和, 当所有边都是单位权值时就是累计度.
2. "最后进入A的两点记为s和t", 网上对s有两种解释, 一是在t之前一个加进去的点, 二是t的前趋节点, 也就是最后选择的那条边的另一端. 正解是第一种!
3. 对于稠密图, 比如这题, 我用堆, 映射二分堆, 或者STL的优先队列都会TLE, 还不如老老实实O(n^3).
另一篇论文:
最小割 Stoer-Wagner 算法
Etrnls 2007-4-15
Stoer-Wagner 算法用来求无向图 G=(V, E)的全局最小割。
算法基于这样一个定理:对于任意s, t V ∈ ,全局最小割或者等于原图的s-t 最小割,或者等于将原图进行 Contract(s,
t)操作所得的图的全局最小割。
算法框架:
1. 设当前找到的最小割MinCut 为+∞
2. 在 G中求出任意 s-t 最小割 c,MinCut = min(MinCut, c)
3. 对 G作 Contract(s, t)操作,得到 G'=(V', E'),若|V'| > 1,则G=G'并转 2,否则MinCut 为原图的全局最
小割
Contract 操作定义:
若不存在边(p, q),则定义边(p, q)权值w(p, q) = 0
Contract(a, b): 删掉点 a, b 及边(a, b),加入新节点 c,对于任意 v V ∈ ,w(v, c) = w(c, v) = w(a, v) + w(b,
v)
求 G=(V, E)中任意 s-t 最小割的算法:
定义w(A, x) = ∑w(v[i], x),v[i] A ∈
定义 Ax 为在x 前加入 A 的所有点的集合(不包括 x)
1. 令集合 A={a},a为 V中任意点
2. 选取 V - A中的 w(A, x)最大的点 x加入集合 A
3. 若|A|=|V|,结束
令倒数第二个加入 A的点为 s,最后一个加入 A的点为 t,则s-t 最小割为 w(At, t)
再加一份模板
pku2914 Minimum Cut
/*pku 2914 */ #include<stdio.h> #include<string.h> #define NN 504 #define INF 1 << 30 int vis[NN]; int wet[NN]; int combine[NN]; int map[NN][NN]; int S, T, minCut, N; void Search(){ int i, j, Max, tmp; memset(vis, 0, sizeof(vis)); memset(wet, 0, sizeof(wet)); S = T = -1; for (i = 0; i < N; i++){ Max = -INF; for (j = 0; j < N; j++){ if (!combine[j] && !vis[j] && wet[j] > Max){ tmp = j; Max = wet[j]; } } if (T == tmp) return; S = T; T = tmp; minCut = Max; vis[tmp] = 1; for (j = 0; j < N; j++){ if (!combine[j] && !vis[j]){ wet[j] += map[tmp][j]; } } } } int Stoer_Wagner(){ int i, j; memset(combine, 0, sizeof(combine)); int ans = INF; for (i = 0; i < N - 1; i++){ Search(); if (minCut < ans) ans = minCut; if (ans == 0) return 0; combine[T] = 1; for (j = 0; j < N; j++){ if (!combine[j]){ map[S][j] += map[T][j]; map[j][S] += map[j][T]; } } } return ans; } int main() { int a, b, c, M; while(scanf("%d%d", &N, &M) != EOF){ memset(map, 0, sizeof(map)); while(M--){ scanf("%d%d%d", &a, &b, &c); map[a][b] += c; map[b][a] += c; } printf("%d\n", Stoer_Wagner()); } return 0; }