Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) - D2. Optimal Subsequences (Hard Version)(主席树)
题意:一共有$n$个数,$m$次询问,每次询问包括$k、pos$两个数,需要你从这$n$个数里面找出$k$个数,使得他们的总和最大,如果有多种情况,找出序号字典序最小的一组,然后输出这个序列中第$pos$个数的值。
思路:根据贪心的思想,把这$n$个数按大到小排个序$($相同大小按下标从小到大$)$,再按照每个元素的下标依次放入主席树中,对于每次询问,查找前$k$个数中第$pos$大的数,但这个查找到的值是下标,再把这个下标对应到数值即可,体现在代码中的$b[]$数组中。
#include <iostream> #include <algorithm> #include <cstdio> #include <vector> using namespace std; const int N = 200010; struct date { int val, pos; }; struct node { int l, r, sum; }; int n, q, cnt, root[N], b[N]; date a[N]; node tree[40 * N]; bool cmp(date one, date two) { if (one.val != two.val) return one.val > two.val; return one.pos < two.pos; } void update(int l, int r, int &x, int y, int pos) { tree[++cnt] = tree[y]; tree[cnt].sum++, x = cnt; if (l == r) return; int mid = (l + r) / 2; if (mid >= pos) update(l, mid, tree[x].l, tree[y].l, pos); else update(mid + 1, r, tree[x].r, tree[y].r, pos); } int query(int l, int r, int x, int y, int k) { if (l == r) return l; int mid = (l + r) / 2; int sum = tree[tree[y].l].sum - tree[tree[x].l].sum; if (sum >= k) return query(l, mid, tree[x].l, tree[y].l, k); else return query(mid + 1, r, tree[x].r, tree[y].r, k - sum); } int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) { scanf("%d", &a[i].val); a[i].pos = i; } sort(a + 1, a + n + 1, cmp); for (int i = 1; i <= n; i++) { b[a[i].pos] = a[i].val; update(1, n, root[i], root[i - 1], a[i].pos); } scanf("%d", &q); while (q--) { int k, pos; scanf("%d%d", &k, &pos); printf("%d\n", b[query(1, n, root[0], root[k], pos)]); } return 0; }