【HBase】HBase与MapReduce集成——从HDFS的文件读取数据到HBase
需求
将HDFS路径 /hbase/input/user.txt 文件的内容读取并写入到HBase 表myuser2中
首先在HDFS上准备些数据让我们用
hdfs dfs -mkdir -p /hbase/input
cd /export/servers/
vim user.txt
填写一下数据,注意是用 \t 分隔的
0007 zhangsan 18
0008 lisi 25
0009 wangwu 20
保存后上传到HDFS上就行
hdfs dfs -put user.txt /hbase/input
步骤
一、创建maven工程,导入jar包
<repositories>
<repository>
<id>cloudera</id>
<url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
</repository>
</repositories>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.6.0-mr1-cdh5.14.0</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-client</artifactId>
<version>1.2.0-cdh5.14.0</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-server</artifactId>
<version>1.2.0-cdh5.14.0</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.testng</groupId>
<artifactId>testng</artifactId>
<version>6.14.3</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.0</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<encoding>UTF-8</encoding>
<!-- <verbal>true</verbal>-->
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.2</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*/RSA</exclude>
</excludes>
</filter>
</filters>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
二、开发MapReduce程序
定义一个Main方法类——HdfsReadHbaseWrite
package cn.itcast.mr.demo2;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class HdfsReadHbaseWrite extends Configured implements Tool {
@Override
public int run(String[] args) throws Exception {
//获取Job对象
Job job = Job.getInstance(super.getConf(), "hdfs->hbase");
//获取输入数据和路径
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.setInputPaths(job, new Path("hdfs://node01:8020/hbase/input"));
//自定义Map逻辑
job.setMapperClass(HDFSReadMapper.class);
//获取k2,v2输出类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(NullWritable.class);
//自定义Reduce逻辑
TableMapReduceUtil.initTableReducerJob("myuser2", HbaseWriteReducer.class, job);
//设置reduceTask个数
job.setNumReduceTasks(1);
//提交任务
boolean b = job.waitForCompletion(true);
return b ? 0 : 1;
}
public static void main(String[] args) throws Exception {
Configuration configuration = HBaseConfiguration.create();
configuration.set("hbase.zookeeper.quorum", "node01:2181,node02:2181,node03:2181");
int run = ToolRunner.run(configuration, new HdfsReadHbaseWrite(), args);
System.exit(run);
}
}
自定义Map逻辑,定义一个Mapper类——HDFSReadMapper
package cn.itcast.mr.demo2;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class HDFSReadMapper extends Mapper<LongWritable, Text, Text, NullWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
/*
0007 zhangsan 18
0008 lisi 25
0009 wangwu 20
我们要读取的数据都直接封装到了value中,所以直接拿到以后输出就行
*/
context.write(value, NullWritable.get());
}
}
自定义Reduce逻辑,定义一个Reducer类——HbaseWriteReducer
package cn.itcast.mr.demo2;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import java.io.IOException;
public class HbaseWriteReducer extends TableReducer<Text, NullWritable, ImmutableBytesWritable> {
@Override
protected void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
/*
0007 zhangsan 18
0008 lisi 25
0009 wangwu 20
*/
//先把拿到的数据分割一下
String[] split = key.toString().split("\t");
//拿到rowKey
byte[] rowKey = split[0].getBytes();
//拿到nameValue
byte[] nameValue = split[1].getBytes();
//拿到ageValue
byte[] ageValue = split[2].getBytes();
//创建put对象
Put put = new Put(rowKey);
//添加数据
put.addColumn("f1".getBytes(), "name".getBytes(), nameValue);
put.addColumn("f1".getBytes(), "age".getBytes(), ageValue);
//构建ImmutableBytesWritable
ImmutableBytesWritable immutableBytesWritable = new ImmutableBytesWritable();
immutableBytesWritable.set(rowKey);
//转换成k3,v3输出
context.write(immutableBytesWritable, put);
}
}