多项式求逆
多项式求逆
求 \(A(x)\) 在 \(\%x^{n}\) 意义下的逆元 \(B(x)\)
首先求出 \(A(x)\) 在 \(\%x^{\lceil \frac{n}{2} \rceil}\) 意义下的逆元 \(C(x)\),即 $A(x)C(x)=1 $ \((\%x^{\lceil \frac{n}{2} \rceil})\)
移项得 \(A(x)C(x)-1 = 0\) \((\%x^{\lceil \frac{n}{2} \rceil})\)
两边平方 \(A^{2}(x)C^{2}(x)-2A(x)C(x)+1=0\) \((\% x^{n})\)
然后两边同时 \(\times B(x)\) 得 \(A(x)C^{2}(x)-2C(x)+B(x)=0\) \((\% x^{n})\)
然后得到 \(B(x)=2C(x)-A(x)C^{2}(x)\) \((\% x^{n})\)
\(B(x)=C(x)(2-A(x)C(x))\)
然后递归求解即可
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=400009;
const int mm=998244353;
long long Ksm(long long a,int p){
long long ret=1;
for(;p;p>>=1,a=a*a%mm){
if(p&1)ret=ret*a%mm;
}
return ret;
}
int rev[maxn];
void NTT(long long *arr,int n,int f){
int b=0;
for(int len=1;len<n;len<<=1)++b;
for(int i=0;i<n;++i)rev[i]=(rev[i>>1]>>1)|((i&1)<<(b-1));
for(int i=0;i<n;++i)if(i<rev[i])swap(arr[i],arr[rev[i]]);
for(int k=1;k<n;k<<=1){
int p=k+k;
long long wn=Ksm(3LL,(mm-1)/p);
if(f==-1)wn=Ksm(wn,mm-2);
for(int i=0;i<n;i+=p){
long long w=1;
for(int j=0;j<k;++j,w=w*wn%mm){
long long x=arr[i+j],y=arr[i+j+k]*w%mm;
arr[i+j]=(x+y)%mm;
arr[i+j+k]=(x-y+mm)%mm;
}
}
}
if(f==-1){
long long inv=Ksm(n*1LL,mm-2);
for(int i=0;i<n;++i)arr[i]=arr[i]*inv%mm;
}
}
int n;
long long A[maxn],B[maxn],C[maxn];
void DivCon(int dg){
if(dg==1){
B[0]=Ksm(A[0],mm-2);
return;
}
DivCon((dg+1)>>1);
int len=1;
for(len=1;len<(dg<<1);len<<=1);
for(int i=0;i<dg;++i)C[i]=A[i];
for(int i=dg;i<len;++i)C[i]=0;
NTT(B,len,1);
NTT(C,len,1);
for(int i=0;i<len;++i)B[i]=B[i]*(2-B[i]*C[i]%mm+mm)%mm;
NTT(B,len,-1);
for(int i=dg;i<len;++i)B[i]=0;
}
int main(){
scanf("%d",&n);
for(int i=0;i<n;++i)scanf("%lld",&A[i]);
DivCon(n);
for(int i=0;i<n;++i)printf("%lld ",B[i]);
printf("\n");
return 0;
}
luoguP4721 分治FFT
已知\(f(0)=1\)
\(f(i)= \sum_{j=0}^{i-1}f(j)g(i-j)\)
求\(f\)
分治FFT的做法
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=400009;
const int mm=998244353;
long long Ksm(long long a,int p){
long long ret=1;
for(;p;p>>=1,a=a*a%mm){
if(p&1)ret=ret*a%mm;
}
return ret;
}
int rev[maxn];
void NTT(long long *arr,int n,int f){
int b=0;
for(int len=1;len<n;len<<=1)++b;
for(int i=0;i<n;++i)rev[i]=(rev[i>>1]>>1)|((i&1)<<(b-1));
for(int i=0;i<n;++i)if(i<rev[i])swap(arr[i],arr[rev[i]]);
for(int k=1;k<n;k<<=1){
int p=k+k;
long long wn=Ksm(3LL,(mm-1)/p);
if(f==-1)wn=Ksm(wn,mm-2);
for(int i=0;i<n;i+=p){
long long w=1;
for(int j=0;j<k;++j,w=w*wn%mm){
long long x=arr[i+j],y=arr[i+j+k]*w%mm;
arr[i+j]=(x+y)%mm;
arr[i+j+k]=(x-y+mm)%mm;
}
}
}
if(f==-1){
long long inv=Ksm(n*1LL,mm-2);
for(int i=0;i<n;++i)arr[i]=arr[i]*inv%mm;
}
}
long long PolyA[maxn],PolyB[maxn];
int n;
long long f[maxn]={0},g[maxn]={0};
void DivFFT(int l,int r){
if(l==r){
return;
}
int mid=(l+r)>>1;
DivFFT(l,mid);
int p1=0,p2=0,len=0;
for(int i=l;i<=mid;++i)PolyA[p1++]=f[i];
for(int i=1;i<=r-l;++i)PolyB[p2++]=g[i];
for(len=1;len<=(p1+p2-2);len<<=1);
for(int i=p1;i<len;++i)PolyA[i]=0;
for(int i=p2;i<len;++i)PolyB[i]=0;
NTT(PolyA,len,1);
NTT(PolyB,len,1);
for(int i=0;i<len;++i)PolyA[i]=PolyA[i]*PolyB[i]%mm;
NTT(PolyA,len,-1);
for(int i=mid+1;i<=r;++i){
f[i]=(f[i]+PolyA[p1-2+i-mid])%mm;
}
DivFFT(mid+1,r);
}
int main(){
scanf("%d",&n);
for(int i=1;i<n;++i)scanf("%lld",&g[i]);
f[0]=1;
DivFFT(0,n-1);
for(int i=0;i<n;++i)printf("%lld ",f[i]);
printf("\n");
return 0;
}
多项式求逆的做法
令\(g(0)=0\),则\(f(i) =\sum_{j=0}^{i} f(j)g(i-j)\)
那么 \(f*g + 1=f\)
\(f(1-g)=1\)
\(f= \frac{1}{1-g}\)
对 \(\frac{1}{1-g}\) 在 \(\%x^{n+1}\)下求逆即可
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=400009;
const int mm=998244353;
long long Ksm(long long a,int p){
long long ret=1;
for(;p;p>>=1,a=a*a%mm){
if(p&1)ret=ret*a%mm;
}
return ret;
}
int rev[maxn];
void NTT(long long *arr,int n,int f){
int b=0;
for(int len=1;len<n;len<<=1)++b;
for(int i=0;i<n;++i)rev[i]=(rev[i>>1]>>1)|((i&1)<<(b-1));
for(int i=0;i<n;++i)if(i<rev[i])swap(arr[i],arr[rev[i]]);
for(int k=1;k<n;k<<=1){
int p=k+k;
long long wn=Ksm(3LL,(mm-1)/p);
if(f==-1)wn=Ksm(wn,mm-2);
for(int i=0;i<n;i+=p){
long long w=1;
for(int j=0;j<k;++j,w=w*wn%mm){
long long x=arr[i+j],y=arr[i+j+k]*w%mm;
arr[i+j]=(x+y)%mm;
arr[i+j+k]=(x-y+mm)%mm;
}
}
}
if(f==-1){
long long inv=Ksm(n*1LL,mm-2);
for(int i=0;i<n;++i)arr[i]=arr[i]*inv%mm;
}
}
int n;
long long A[maxn],B[maxn],C[maxn];
void PolyInv(int dg){
if(dg==1){
B[0]=Ksm(A[0],mm-2);
return;
}
PolyInv((dg+1)>>1);
int len=1;
for(len=1;len<(dg<<1);len<<=1);
for(int i=0;i<dg;++i)C[i]=A[i];
for(int i=dg;i<len;++i)C[i]=0;
NTT(B,len,1);
NTT(C,len,1);
for(int i=0;i<len;++i)B[i]=B[i]*(2-B[i]*C[i]%mm+mm)%mm;
NTT(B,len,-1);
for(int i=dg;i<len;++i)B[i]=0;
}
int main(){
scanf("%d",&n);
for(int i=1;i<n;++i)scanf("%lld",&A[i]);
A[0]=1;
for(int i=1;i<n;++i)A[i]=(mm-A[i])%mm;
PolyInv(n);
for(int i=0;i<n;++i)printf("%lld ",B[i]);
printf("\n");
return 0;
}
\(f(n)=\sum_{i=1}^{n-1}f(i)f(n-i)\) 怎么分治FFT???
致歉:笔者已经意识到这是一篇几乎没有价值的文章,给您的阅读带来不好的体验,并且干扰了您的搜索环境,非常抱歉!