常用算法模板

1|0由数据范围反推算法复杂度以及算法内容

模板来源:www.acwing.com

一般ACM或者笔试题的时间限制是1秒或2秒。
在这种情况下,C++代码中的操作次数控制在 10^7 ∼ 10^8为最佳。

下面给出在不同数据范围下,代码的时间复杂度和算法该如何选择:

  1. n≤30, 指数级别, dfs+剪枝,状态压缩dp
  2. n≤100 => O(n^3),floyd,dp,高斯消元
  3. n≤1000 =>O(n^2) ,O(n^2logn),dp,二分,朴素版Dijkstra、朴素版Prim、Bellman-Ford
  4. n≤10000 => O(n∗√n),块状链表、分块、莫队
  5. n≤10^5 => O(nlogn) => 各种sort,线段树、树状数组、set/map、heap、拓扑排序、dijkstra+heap、prim+heap、Kruskal、spfa、求凸包、求半平面交、二分、CDQ分治、整体二分、后缀数组、树链剖分、动态树
  6. n≤10^6 => O(n), 以及常数较小的O(nlogn)算法 => 单调队列、 hash、双指针扫描、并查集,kmp、AC自动机,常数比较小的O(nlogn)的做法:sort、树状数组、heap、dijkstra、spfa
  7. n≤10^7 => O(n),双指针扫描、kmp、AC自动机、线性筛素数
  8. n≤10^9 => O(√n),判断质数
  9. n≤10^18 => O(logn),最大公约数,快速幂,数位DP
  10. n≤10^1000 => O((logn)^2),高精度加减乘除
  11. n≤10^100000 => O(logk×loglogk),k表示位数,高精度加减、FFT/NTT

2|0代码模板1——基础算法

2|1快速排序算法模板 —— 模板题 AcWing 785. 快速排序
void quick_sort(int q[], int l, int r) { if (l >= r) return; int i = l - 1, j = r + 1, x = q[l + r >> 1]; while (i < j) { do i ++ ; while (q[i] < x); do j -- ; while (q[j] > x); if (i < j) swap(q[i], q[j]); } quick_sort(q, l, j), quick_sort(q, j + 1, r); }
2|2归并排序算法模板 —— 模板题 AcWing 787. 归并排序
void merge_sort(int q[], int l, int r) { if (l >= r) return; int mid = l + r >> 1; merge_sort(q, l, mid); merge_sort(q, mid + 1, r); int k = 0, i = l, j = mid + 1; while (i <= mid && j <= r) if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ]; else tmp[k ++ ] = q[j ++ ]; while (i <= mid) tmp[k ++ ] = q[i ++ ]; while (j <= r) tmp[k ++ ] = q[j ++ ]; for (i = l, j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j]; }
2|3整数二分算法模板 —— 模板题 AcWing 789. 数的范围
bool check(int x) {/* ... */} // 检查x是否满足某种性质 // 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用: int bsearch_1(int l, int r) { while (l < r) { int mid = l + r >> 1; if (check(mid)) r = mid; // check()判断mid是否满足性质 else l = mid + 1; } return l; } // 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用: int bsearch_2(int l, int r) { while (l < r) { int mid = l + r + 1 >> 1; if (check(mid)) l = mid; else r = mid - 1; } return l; }
2|4浮点数二分算法模板 —— 模板题 AcWing 790. 数的三次方根
bool check(double x) {/* ... */} // 检查x是否满足某种性质 double bsearch_3(double l, double r) { const double eps = 1e-6; // eps 表示精度,取决于题目对精度的要求 while (r - l > eps) { double mid = (l + r) / 2; if (check(mid)) r = mid; else l = mid; } return l; }
2|5高精度加法 —— 模板题 AcWing 791. 高精度加法
// C = A + B, A >= 0, B >= 0 vector<int> add(vector<int> &A, vector<int> &B) { if (A.size() < B.size()) return add(B, A); vector<int> C; int t = 0; for (int i = 0; i < A.size(); i ++ ) { t += A[i]; if (i < B.size()) t += B[i]; C.push_back(t % 10); t /= 10; } if (t) C.push_back(t); return C; }
2|6高精度减法 —— 模板题 AcWing 792. 高精度减法
// C = A - B, 满足A >= B, A >= 0, B >= 0 vector<int> sub(vector<int> &A, vector<int> &B) { vector<int> C; for (int i = 0, t = 0; i < A.size(); i ++ ) { t = A[i] - t; if (i < B.size()) t -= B[i]; C.push_back((t + 10) % 10); if (t < 0) t = 1; else t = 0; } while (C.size() > 1 && C.back() == 0) C.pop_back(); return C; }
2|7高精度乘低精度 —— 模板题 AcWing 793. 高精度乘法
// C = A * b, A >= 0, b >= 0 vector<int> mul(vector<int> &A, int b) { vector<int> C; int t = 0; for (int i = 0; i < A.size() || t; i ++ ) { if (i < A.size()) t += A[i] * b; C.push_back(t % 10); t /= 10; } while (C.size() > 1 && C.back() == 0) C.pop_back(); return C; }
2|8高精度除以低精度 —— 模板题 AcWing 794. 高精度除法
// A / b = C ... r, A >= 0, b > 0 vector<int> div(vector<int> &A, int b, int &r) { vector<int> C; r = 0; for (int i = A.size() - 1; i >= 0; i -- ) { r = r * 10 + A[i]; C.push_back(r / b); r %= b; } reverse(C.begin(), C.end()); while (C.size() > 1 && C.back() == 0) C.pop_back(); return C; }
2|9一维前缀和 —— 模板题 AcWing 795. 前缀和
S[i] = a[1] + a[2] + ... a[i] a[l] + ... + a[r] = S[r] - S[l - 1]
2|10二维前缀和 —— 模板题 AcWing 796. 子矩阵的和
S[i, j] =S[i-1j]+S[i,j-1]-S[i-1,j-1]+a[i,j] = 第i行j列格子左上部分所有元素的和 以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和为: S[x2, y2] - S[x1 - 1, y2] - S[x2, y1 - 1] + S[x1 - 1, y1 - 1]
2|11一维差分 —— 模板题 AcWing 797. 差分
给区间[l, r]中的每个数加上c:B[l] += c, B[r + 1] -= c
2|12二维差分 —— 模板题 AcWing 798. 差分矩阵
给以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵中的所有元素加上cS[x1, y1] += c, S[x2 + 1, y1] -= c, S[x1, y2 + 1] -= c, S[x2 + 1, y2 + 1] += c
2|13位运算 —— 模板题 AcWing 801. 二进制中1的个数
求n的第k位数字: n >> k & 1 返回n的最后一位1lowbit(n) = n & -n
2|14双指针算法—模板题 AcWIng 799. 最长连续不重复子序列,AcWing 800. 数组元素的目标和
for (int i = 0, j = 0; i < n; i ++ ) { while (j < i && check(i, j)) j ++ ; // 具体问题的逻辑 }

常见问题分类:
(1) 对于一个序列,用两个指针维护一段区间
(2) 对于两个序列,维护某种次序,比如归并排序中合并两个有序序列的操作

2|15离散化 —— 模板题 AcWing 802. 区间和
vector<int> alls; // 存储所有待离散化的值 sort(alls.begin(), alls.end()); // 将所有值排序 alls.erase(unique(alls.begin(), alls.end()), alls.end()); // 去掉重复元素 // 二分求出x对应的离散化的值 int find(int x) // 找到第一个大于等于x的位置 { int l = 0, r = alls.size() - 1; while (l < r) { int mid = l + r >> 1; if (alls[mid] >= x) r = mid; else l = mid + 1; } return r + 1; // 映射到1, 2, ...n }
2|16区间合并 —— 模板题 AcWing 803. 区间合并
// 将所有存在交集的区间合并 void merge(vector<PII> &segs) { vector<PII> res; sort(segs.begin(), segs.end()); int st = -2e9, ed = -2e9; for (auto seg : segs) if (ed < seg.first) { if (st != -2e9) res.push_back({st, ed}); st = seg.first, ed = seg.second; } else ed = max(ed, seg.second); if (st != -2e9) res.push_back({st, ed}); segs = res; }

3|0代码模板2——数据结构

3|1单链表 —— 模板题 AcWing 826. 单链表
// head存储链表头,e[]存储节点的值,ne[]存储节点的next指针,idx表示当前用到了哪个节点 int head, e[N], ne[N], idx; // 初始化 void init() { head = -1; idx = 0; } // 在链表头插入一个数a void insert(int a) { e[idx] = a, ne[idx] = head, head = idx ++ ; } // 将头结点删除,需要保证头结点存在 void remove() { head = ne[head]; }
3|2双链表 —— 模板题 AcWing 827. 双链表
// e[]表示节点的值,l[]表示节点的左指针,r[]表示节点的右指针,idx表示当前用到了哪个节点 int e[N], l[N], r[N], idx; // 初始化 void init() { //0是左端点,1是右端点 r[0] = 1, l[1] = 0; idx = 2; } // 在节点a的右边插入一个数x void insert(int a, int x) { e[idx] = x; l[idx] = a, r[idx] = r[a]; l[r[a]] = idx, r[a] = idx ++ ; } // 删除节点a void remove(int a) { l[r[a]] = l[a]; r[l[a]] = r[a]; }
3|3栈 —— 模板题 AcWing 828. 模拟栈
// tt表示栈顶 int stk[N], tt = 0; // 向栈顶插入一个数 stk[ ++ tt] = x; // 从栈顶弹出一个数 tt -- ; // 栈顶的值 stk[tt]; // 判断栈是否为空 if (tt > 0) { }
3|4队列 —— 模板题 AcWing 829. 模拟队列
1. 普通队列: // hh 表示队头,tt表示队尾 int q[N], hh = 0, tt = -1; // 向队尾插入一个数 q[ ++ tt] = x; // 从队头弹出一个数 hh ++ ; // 队头的值 q[hh]; // 判断队列是否为空 if (hh <= tt) { } 2. 循环队列 // hh 表示队头,tt表示队尾的后一个位置 int q[N], hh = 0, tt = 0; // 向队尾插入一个数 q[tt ++ ] = x; if (tt == N) tt = 0; // 从队头弹出一个数 hh ++ ; if (hh == N) hh = 0; // 队头的值 q[hh]; // 判断队列是否为空 if (hh != tt) { }
3|5单调栈 —— 模板题 AcWing 830. 单调栈

常见模型:找出每个数左边离它最近的比它大/小的数

int tt = 0; for (int i = 1; i <= n; i ++ ) { while (tt && check(stk[tt], i)) tt -- ; stk[ ++ tt] = i; }
3|6单调队列 —— 模板题 AcWing 154. 滑动窗口

常见模型:找出滑动窗口中的最大值/最小值

int hh = 0, tt = -1; for (int i = 0; i < n; i ++ ) { while (hh <= tt && check_out(q[hh])) hh ++ ; // 判断队头是否滑出窗口 while (hh <= tt && check(q[tt], i)) tt -- ; q[ ++ tt] = i; }
3|7KMP —— 模板题 AcWing 831. KMP字符串
// s[]是长文本,p[]是模式串,n是s的长度,m是p的长度 求模式串的Next数组: for (int i = 2, j = 0; i <= m; i ++ ) { while (j && p[i] != p[j + 1]) j = ne[j]; // 下一个元素不相等,把k向前回溯 if (p[i] == p[j + 1]) j ++ ; // 下一个元素相等,所以最长重复子串+1 ne[i] = j; //ne数组赋值 } // 匹配 for (int i = 1, j = 0; i <= n; i ++ ) { while (j && s[i] != p[j + 1]) j = ne[j]; //回溯到当前的最长重叠子串 if (s[i] == p[j + 1]) j ++ ; if (j == m) { j = ne[j]; // 匹配成功后的逻辑 } }
3|8Trie树 —— 模板题 AcWing 835. Trie字符串统计
int son[N][26], cnt[N], idx; // son[][]存储树中每个节点的子节点, // cnt[]存储以每个节点结尾的单词数量 // idx表示当前用到的下标,0号点既是根节点,又是空节点,即如果一个点没有子节点,也会让它指向0 // 插入一个字符串 void insert(char *str) { int p = 0;//从根节点开始从前往后遍历 for (int i = 0; str[i]; i ++ )//c++中结尾是'\0' { int u = str[i] - 'a'; if (!son[p][u]) son[p][u] = ++ idx;//如果p节点不存在该字母,就将这个字母创建出来 p = son[p][u];//p走到下一个节点,此时的p就是str中最后一个字符对应的trie树的位置idx。 } cnt[p] ++ ;//表示以这个点结尾的单词数量多了一个 } // 查询字符串出现的次数 int query(char *str) { int p = 0; for (int i = 0; str[i]; i ++ ) { int u = str[i] - 'a'; if (!son[p][u]) return 0;//如果p节点不存在该字母,说明集合中不存在这个单词 p = son[p][u]; } return cnt[p];//返回以p结尾的单词数量 }
3|9并查集 —— 模板题 AcWing 836. 合并集合, AcWing 837. 连通块中点的数量

(1)朴素并查集:

int p[N]; //存储每个点的祖宗节点 // 返回x的祖宗节点 int find(int x) { if (p[x] != x) p[x] = find(p[x]); return p[x]; } // 初始化,假定节点编号是1~n for (int i = 1; i <= n; i ++ ) p[i] = i; // 合并a和b所在的两个集合: p[find(a)] = find(b);

(2)维护size的并查集:

int p[N], size[N]; //p[]存储每个点的祖宗节点, size[]只有祖宗节点的有意义,表示祖宗节点所在集合中的点的数量 // 返回x的祖宗节点 int find(int x) { if (p[x] != x) p[x] = find(p[x]); return p[x]; } // 初始化,假定节点编号是1~n for (int i = 1; i <= n; i ++ ) { p[i] = i; size[i] = 1; } // 合并a和b所在的两个集合: size[find(b)] += size[find(a)]; p[find(a)] = find(b);

(3)维护到祖宗节点距离的并查集:

int p[N], d[N]; //p[]存储每个点的祖宗节点, d[x]存储x到p[x]的距离 // 返回x的祖宗节点 int find(int x) { if (p[x] != x) { int u = find(p[x]); d[x] += d[p[x]]; p[x] = u; } return p[x]; } // 初始化,假定节点编号是1~n for (int i = 1; i <= n; i ++ ) { p[i] = i; d[i] = 0; } // 合并a和b所在的两个集合: p[find(a)] = find(b); d[find(a)] = distance; // 根据具体问题,初始化find(a)的偏移量
3|10堆 —— 模板题 AcWing 838. 堆排序, AcWing 839. 模拟堆
// h[N]存储堆中的值, h[1]是堆顶,x的左儿子是2x, 右儿子是2x + 1 // ph[k]存储第k个插入的点在堆中的位置 // hp[k]存储堆中下标是k的点是第几个插入的 int h[N], ph[N], hp[N], size; // 交换两个点,及其映射关系 void heap_swap(int a, int b) { swap(ph[hp[a]],ph[hp[b]]); swap(hp[a], hp[b]); swap(h[a], h[b]); } void down(int u) { int t = u; if (u * 2 <= size && h[u * 2] < h[t]) t = u * 2; if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1; if (u != t) { heap_swap(u, t); down(t); } } void up(int u) { while (u / 2 && h[u] < h[u / 2]) { heap_swap(u, u / 2); u >>= 1; } } // O(n)建堆 for (int i = n / 2; i; i -- ) down(i);
3|11一般哈希 —— 模板题 AcWing 840. 模拟散列表

(1) 拉链法

int h[N], e[N], ne[N], idx; // 向哈希表中插入一个数 void insert(int x) { int k = (x % N + N) % N; e[idx] = x; ne[idx] = h[k]; h[k] = idx ++ ; } // 在哈希表中查询某个数是否存在 bool find(int x) { int k = (x % N + N) % N; for (int i = h[k]; i != -1; i = ne[i]) if (e[i] == x) return true; return false; }

(2) 开放寻址法

int h[N]; // 如果x在哈希表中,返回x的下标;如果x不在哈希表中,返回x应该插入的位置 int find(int x) { int t = (x % N + N) % N; while (h[t] != null && h[t] != x) { t ++ ; if (t == N) t = 0; } return t; }
3|12字符串哈希 —— 模板题 AcWing 841. 字符串哈希

核心思想:将字符串看成P进制数,P的经验值是131或13331,取这两个值的冲突概率低
小技巧:取模的数用2^64,这样直接用unsigned long long存储,溢出的结果就是取模的结果

typedef unsigned long long ULL; ULL h[N], p[N]; // h[k]存储字符串前k个字母的哈希值, p[k]存储 P^k mod 2^64 // 初始化 p[0] = 1; for (int i = 1; i <= n; i ++ ) { h[i] = h[i - 1] * P + str[i]; p[i] = p[i - 1] * P; } // 计算子串 str[l ~ r] 的哈希值 ULL get(int l, int r) { return h[r] - h[l - 1] * p[r - l + 1]; }
3|13C++ STL简介
vector, 变长数组,倍增的思想
size() 返回元素个数 empty() 返回是否为空 clear() 清空 front()/back() 返回当前vector容器中起始元素/末尾元素的引用。 push_back()/pop_back() 将一个新的元素加到vector的最后面 / 删除Vector容器中的最后一个元素 begin()/end() 返回一个当前vector容器中末尾元素的迭代器 [] 支持比较运算,按字典序
pair<int, int>
first, 第一个元素 second, 第二个元素 支持比较运算,以first为第一关键字,以second为第二关键字(字典序)
string,字符串
size()/length() 返回字符串长度 empty() 判断容器是否为空 clear() 清空字符串 substr(起始下标,(子串长度)) 返回子串 c_str() 返回字符串所在字符数组的起始地址
queue, 队列
size() empty() push() 向队尾插入一个元素 front() 返回队头元素 back() 返回队尾元素 pop() 弹出队头元素
priority_queue, 优先队列,默认是大根堆
size() empty() push() 插入一个元素 top() 返回堆顶元素 pop() 弹出堆顶元素 定义成小根堆的方式:priority_queue<int, vector<int>, greater<int>> q;
stack, 栈
size() empty() push() 向栈顶插入一个元素 top() 返回栈顶元素 pop() 弹出栈顶元素
deque, 双端队列
size() empty() clear() front()/back() push_back()/pop_back() push_front()/pop_front() begin()/end() []
set, map, multiset, multimap, 基于平衡二叉树(红黑树),动态维护有序序列
size() empty() clear() begin()/end() ++, -- 返回前驱和后继,时间复杂度 O(logn) set/multiset insert() 插入一个数 find() 查找一个数 count() 返回某一个数的个数 erase() (1) 输入是一个数x,删除所有x O(k + logn) (2) 输入一个迭代器,删除这个迭代器 lower_bound()/upper_bound() lower_bound(x) 返回大于等于x的最小的数的迭代器 upper_bound(x) 返回大于x的最小的数的迭代器 map/multimap insert() 插入的数是一个pair erase() 输入的参数是pair或者迭代器 find() [] 注意multimap不支持此操作。 时间复杂度是 O(logn) lower_bound()/upper_bound()
unordered_set, unordered_map, unordered_multiset, unordered_multimap, 哈希表
和上面类似,增删改查的时间复杂度是 O(1) 不支持 lower_bound()/upper_bound(), 迭代器的++,--
bitset, 圧位
bitset<10000> s; ~, &, |, ^ >>, << ==, != [] count() 返回有多少个1 any() 判断是否至少有一个1 none() 判断是否全为0 set() 把所有位置成1 set(k, v) 将第k位变成v reset() 把所有位变成0 flip() 等价于~ flip(k) 把第k位取反

4|0代码模板3——搜索与图论

4|1树与图的存储

树是一种特殊的图,与图的存储方式相同。
对于无向图中的边ab,存储两条有向边a->b, b->a。
因此我们可以只考虑有向图的存储。

(1) 邻接矩阵:

g[a][b] 存储边a->b

(2) 邻接表:

// 对于每个点k,开一个单链表,存储k所有可以走到的点。h[k]存储这个单链表的头结点 int h[N], e[N], ne[N], idx; // 添加一条边a->b void add(int a, int b) { e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ; } // 初始化 idx = 0; memset(h, -1, sizeof h);
4|2树与图的遍历

时间复杂度 O(n+m), n 表示点数,m 表示边数
(1) 深度优先遍历 —— 模板题 AcWing 846. 树的重心

int dfs(int u) { st[u] = true; // st[u] 表示点u已经被遍历过 for (int i = h[u]; i != -1; i = ne[i]) { int j = e[i]; if (!st[j]) dfs(j); } }

(2) 宽度优先遍历 —— 模板题 AcWing 847. 图中点的层次

queue<int> q; st[1] = true; // 表示1号点已经被遍历过 q.push(1); while (q.size()) { int t = q.front(); q.pop(); for (int i = h[t]; i != -1; i = ne[i]) { int j = e[i]; if (!st[j]) { st[j] = true; // 表示点j已经被遍历过 q.push(j); } } }
4|3拓扑排序 —— 模板题 AcWing 848. 有向图的拓扑序列

时间复杂度 O(n+m), n 表示点数,m 表示边数

bool topsort() { int hh = 0, tt = -1; // d[i] 存储点i的入度 for (int i = 1; i <= n; i ++ ) if (!d[i]) q[ ++ tt] = i; while (hh <= tt) { int t = q[hh ++ ]; for (int i = h[t]; i != -1; i = ne[i]) { int j = e[i]; if (-- d[j] == 0) q[ ++ tt] = j; } } // 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。 return tt == n - 1; }
4|4朴素dijkstra算法 —— 模板题 AcWing 849. Dijkstra求最短路 I

时间复杂是 O(n2+m), n 表示点数,m 表示边数

int g[N][N]; // 存储每条边 int dist[N]; // 存储1号点到每个点的最短距离 bool st[N]; // 存储每个点的最短路是否已经确定 // 求1号点到n号点的最短路,如果不存在则返回-1 int dijkstra() { memset(dist, 0x3f, sizeof dist); dist[1] = 0; for (int i = 0; i < n - 1; i ++ ) { int t = -1; // 在还未确定最短路的点中,寻找距离最小的点 for (int j = 1; j <= n; j ++ ) if (!st[j] && (t == -1 || dist[t] > dist[j])) t = j; // 用t更新其他点的距离 for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], dist[t] + g[t][j]); st[t] = true; } if (dist[n] == 0x3f3f3f3f) return -1; return dist[n]; }
4|5堆优化版dijkstra —— 模板题 AcWing 850. Dijkstra求最短路 II

时间复杂度 O(mlogn), n 表示点数,m 表示边数

typedef pair<int, int> PII; int n; // 点的数量 int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边 int dist[N]; // 存储所有点到1号点的距离 bool st[N]; // 存储每个点的最短距离是否已确定 // 求1号点到n号点的最短距离,如果不存在,则返回-1 int dijkstra() { memset(dist, 0x3f, sizeof dist); dist[1] = 0; priority_queue<PII, vector<PII>, greater<PII>> heap; heap.push({0, 1}); // first存储距离,second存储节点编号 while (heap.size()) { auto t = heap.top(); heap.pop(); int ver = t.second, distance = t.first; if (st[ver]) continue; st[ver] = true; for (int i = h[ver]; i != -1; i = ne[i]) { int j = e[i]; if (dist[j] > distance + w[i]) { dist[j] = distance + w[i]; heap.push({dist[j], j}); } } } if (dist[n] == 0x3f3f3f3f) return -1; return dist[n]; }
4|6Bellman-Ford算法 —— 模板题 AcWing 853. 有边数限制的最短路

时间复杂度 O(nm), n 表示点数,m 表示边数
注意在模板题中需要对下面的模板稍作修改,加上备份数组,详情见模板题。

int n, m; // n表示点数,m表示边数 int dist[N]; // dist[x]存储1到x的最短路距离 struct Edge // 边,a表示出点,b表示入点,w表示边的权重 { int a, b, w; }edges[M]; // 求1到n的最短路距离,如果无法从1走到n,则返回-1。 int bellman_ford() { memset(dist, 0x3f, sizeof dist); dist[1] = 0; // 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径, //由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。 for (int i = 0; i < n; i ++ ) { for (int j = 0; j < m; j ++ ) { int a = edges[j].a, b = edges[j].b, w = edges[j].w; if (dist[b] > dist[a] + w) dist[b] = dist[a] + w; } } if (dist[n] > 0x3f3f3f3f / 2) return -1; return dist[n]; }
4|7spfa 算法(队列优化的Bellman-Ford算法) —— 模板题 AcWing 851. spfa求最短路

时间复杂度 平均情况下 O(m),最坏情况下 O(nm), n 表示点数,m 表示边数

int n; // 总点数 int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边 int dist[N]; // 存储每个点到1号点的最短距离 bool st[N]; // 存储每个点是否在队列中 // 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1 int spfa() { memset(dist, 0x3f, sizeof dist); dist[1] = 0; queue<int> q; q.push(1); st[1] = true; while (q.size()) { auto t = q.front(); q.pop(); st[t] = false; for (int i = h[t]; i != -1; i = ne[i]) { int j = e[i]; if (dist[j] > dist[t] + w[i]) { dist[j] = dist[t] + w[i]; if (!st[j]) // 如果队列中已存在j,则不需要将j重复插入 { q.push(j); st[j] = true; } } } } if (dist[n] == 0x3f3f3f3f) return -1; return dist[n]; }
4|8spfa判断图中是否存在负环 —— 模板题 AcWing 852. spfa判断负环

时间复杂度是 O(nm), n 表示点数,m 表示边数

int n; // 总点数 int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边 int dist[N], cnt[N]; // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数 bool st[N]; // 存储每个点是否在队列中 // 如果存在负环,则返回true,否则返回false。 bool spfa() { // 不需要初始化dist数组 // 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点, //由抽屉原理一定有两个点相同,所以存在环。 queue<int> q; for (int i = 1; i <= n; i ++ ) { q.push(i); st[i] = true; } while (q.size()) { auto t = q.front(); q.pop(); st[t] = false; for (int i = h[t]; i != -1; i = ne[i]) { int j = e[i]; if (dist[j] > dist[t] + w[i]) { dist[j] = dist[t] + w[i]; cnt[j] = cnt[t] + 1; // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环 if (cnt[j] >= n) return true; if (!st[j]) { q.push(j); st[j] = true; } } } } return false; }
4|9floyd算法 —— 模板题 AcWing 854. Floyd求最短路

时间复杂度是 O(n3), n 表示点数

初始化: for (int i = 1; i <= n; i ++ ) for (int j = 1; j <= n; j ++ ) if (i == j) d[i][j] = 0; else d[i][j] = INF; // 算法结束后,d[a][b]表示a到b的最短距离 void floyd() { for (int k = 1; k <= n; k ++ ) for (int i = 1; i <= n; i ++ ) for (int j = 1; j <= n; j ++ ) d[i][j] = min(d[i][j], d[i][k] + d[k][j]); }
4|10朴素版prim算法 —— 模板题 AcWing 858. Prim算法求最小生成树

时间复杂度是 O(n2+m), n 表示点数,m 表示边数

int n; // n表示点数 int g[N][N]; // 邻接矩阵,存储所有边 int dist[N]; // 存储其他点到当前最小生成树的距离 bool st[N]; // 存储每个点是否已经在生成树中 // 如果图不连通,则返回INF(值是0x3f3f3f3f), 否则返回最小生成树的树边权重之和 int prim() { memset(dist, 0x3f, sizeof dist); int res = 0; for (int i = 0; i < n; i ++ ) { int t = -1; for (int j = 1; j <= n; j ++ ) if (!st[j] && (t == -1 || dist[t] > dist[j])) t = j; if (i && dist[t] == INF) return INF; if (i) res += dist[t]; st[t] = true; for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]); } return res; }
4|11Kruskal算法 —— 模板题 AcWing 859. Kruskal算法求最小生成树

时间复杂度是 O(mlogm), n 表示点数,m 表示边数

int n, m; // n是点数,m是边数 int p[N]; // 并查集的父节点数组 struct Edge // 存储边 { int a, b, w; bool operator< (const Edge &W)const { return w < W.w; } }edges[M]; int find(int x) // 并查集核心操作 { if (p[x] != x) p[x] = find(p[x]); return p[x]; } int kruskal() { sort(edges, edges + m); for (int i = 1; i <= n; i ++ ) p[i] = i; // 初始化并查集 int res = 0, cnt = 0; for (int i = 0; i < m; i ++ ) { int a = edges[i].a, b = edges[i].b, w = edges[i].w; a = find(a), b = find(b); if (a != b) // 如果两个连通块不连通,则将这两个连通块合并 { p[a] = b; res += w; cnt ++ ; } } if (cnt < n - 1) return INF; return res; }
4|12染色法判别二分图 —— 模板题 AcWing 860. 染色法判定二分图

时间复杂度是 O(n+m), n 表示点数,m 表示边数

int n; // n表示点数 int h[N], e[M], ne[M], idx; // 邻接表存储图 int color[N]; // 表示每个点的颜色,-1表示未染色,0表示白色,1表示黑色 // 参数:u表示当前节点,c表示当前点的颜色 bool dfs(int u, int c) { color[u] = c; for (int i = h[u]; i != -1; i = ne[i]) { int j = e[i]; if (color[j] == -1) { if (!dfs(j, !c)) return false; } else if (color[j] == c) return false; } return true; } bool check() { memset(color, -1, sizeof color); bool flag = true; for (int i = 1; i <= n; i ++ ) if (color[i] == -1) if (!dfs(i, 0)) { flag = false; break; } return flag; }
4|13匈牙利算法 —— 模板题 AcWing 861. 二分图的最大匹配

时间复杂度是 O(nm), n 表示点数,m 表示边数

int n1, n2; // n1表示第一个集合中的点数,n2表示第二个集合中的点数 int h[N], e[M], ne[M], idx; // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边 int match[N]; // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个 bool st[N]; // 表示第二个集合中的每个点是否已经被遍历过 bool find(int x) { for (int i = h[x]; i != -1; i = ne[i]) { int j = e[i]; if (!st[j]) { st[j] = true; if (match[j] == 0 || find(match[j])) { match[j] = x; return true; } } } return false; } // 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点 int res = 0; for (int i = 1; i <= n1; i ++ ) { memset(st, false, sizeof st); if (find(i)) res ++ ; }

5|0代码模板4——数学知识

5|1试除法判定质数 —— 模板题 AcWing 866. 试除法判定质数
bool is_prime(int x) { if (x < 2) return false; for (int i = 2; i <= x / i; i ++ ) if (x % i == 0) return false; return true; }
5|2试除法分解质因数 —— 模板题 AcWing 867. 分解质因数
void divide(int x) { for (int i = 2; i <= x / i; i ++ ) if (x % i == 0) { int s = 0; while (x % i == 0) x /= i, s ++ ; cout << i << ' ' << s << endl; } if (x > 1) cout << x << ' ' << 1 << endl; cout << endl; }
5|3朴素筛法求素数 —— 模板题 AcWing 868. 筛质数
int primes[N], cnt; // primes[]存储所有素数 bool st[N]; // st[x]存储x是否被筛掉 void get_primes(int n) { for (int i = 2; i <= n; i ++ ) { if (st[i]) continue; primes[cnt ++ ] = i; for (int j = i + i; j <= n; j += i) st[j] = true; } }
5|4线性筛法求素数 —— 模板题 AcWing 868. 筛质数
int primes[N], cnt; // primes[]存储所有素数 bool st[N]; // st[x]存储x是否被筛掉 void get_primes(int n) { for (int i = 2; i <= n; i ++ ) { if (!st[i]) primes[cnt ++ ] = i; for (int j = 0; primes[j] <= n / i; j ++ ) { st[primes[j] * i] = true; if (i % primes[j] == 0) break; } } }
5|5试除法求所有约数 —— 模板题 AcWing 869. 试除法求约数
vector<int> get_divisors(int x) { vector<int> res; for (int i = 1; i <= x / i; i ++ ) if (x % i == 0) { res.push_back(i); if (i != x / i) res.push_back(x / i); } sort(res.begin(), res.end()); return res; }
5|6约数个数和约数之和 —— 模板题 AcWing 870. 约数个数, AcWing 871. 约数之和
如果 N = p1^c1 * p2^c2 * ... *pk^ck 约数个数: (c1 + 1) * (c2 + 1) * ... * (ck + 1) 约数之和: (p1^0 + p1^1 + ... + p1^c1) * ... * (pk^0 + pk^1 + ... + pk^ck)
5|7欧几里得算法 —— 模板题 AcWing 872. 最大公约数
int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
5|8求欧拉函数 —— 模板题 AcWing 873. 欧拉函数
int phi(int x) { int res = x; for (int i = 2; i <= x / i; i ++ ) if (x % i == 0) { res = res / i * (i - 1); while (x % i == 0) x /= i; } if (x > 1) res = res / x * (x - 1); return res; }
5|9筛法求欧拉函数 —— 模板题 AcWing 874. 筛法求欧拉函数
int primes[N], cnt; // primes[]存储所有素数 int euler[N]; // 存储每个数的欧拉函数 bool st[N]; // st[x]存储x是否被筛掉 void get_eulers(int n) { euler[1] = 1; for (int i = 2; i <= n; i ++ ) { if (!st[i]) { primes[cnt ++ ] = i; euler[i] = i - 1; } for (int j = 0; primes[j] <= n / i; j ++ ) { int t = primes[j] * i; st[t] = true; if (i % primes[j] == 0) { euler[t] = euler[i] * primes[j]; break; } euler[t] = euler[i] * (primes[j] - 1); } } }
5|10快速幂 —— 模板题 AcWing 875. 快速幂

求 m^k mod p,时间复杂度 O(logk)。

int qmi(int m, int k, int p) { int res = 1 % p, t = m; while (k) { if (k&1) res = res * t % p; t = t * t % p; k >>= 1; } return res; }
5|11扩展欧几里得算法 —— 模板题 AcWing 877. 扩展欧几里得算法

// 求x, y,使得ax + by = gcd(a, b)

int exgcd(int a, int b, int &x, int &y) { if (!b) { x = 1; y = 0; return a; } int d = exgcd(b, a % b, y, x); y -= (a/b) * x; return d; }
5|12高斯消元 —— 模板题 AcWing 883. 高斯消元解线性方程组
// a[N][N]是增广矩阵 int gauss() { int c, r; for (c = 0, r = 0; c < n; c ++ ) { int t = r; for (int i = r; i < n; i ++ ) // 找到绝对值最大的行 if (fabs(a[i][c]) > fabs(a[t][c])) t = i; if (fabs(a[t][c]) < eps) continue; for (int i = c; i <= n; i ++ ) swap(a[t][i], a[r][i]); // 将绝对值最大的行换到最顶端 for (int i = n; i >= c; i -- ) a[r][i] /= a[r][c]; // 将当前行的首位变成1 for (int i = r + 1; i < n; i ++ ) // 用当前行将下面所有的列消成0 if (fabs(a[i][c]) > eps) for (int j = n; j >= c; j -- ) a[i][j] -= a[r][j] * a[i][c]; r ++ ; } if (r < n) { for (int i = r; i < n; i ++ ) if (fabs(a[i][n]) > eps) return 2; // 无解 return 1; // 有无穷多组解 } for (int i = n - 1; i >= 0; i -- ) for (int j = i + 1; j < n; j ++ ) a[i][n] -= a[i][j] * a[j][n]; return 0; // 有唯一解 }
5|13递归法求组合数 —— 模板题 AcWing 885. 求组合数 I
// c[a][b] 表示从a个苹果中选b个的方案数 for (int i = 0; i < N; i ++ ) for (int j = 0; j <= i; j ++ ) if (!j) c[i][j] = 1; else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
5|14通过预处理逆元求组合数 —— 模板题 AcWing 886. 求组合数 II

首先预处理出所有阶乘取模的余数fact[N],以及所有阶乘取模的逆元infact[N]
如果取模的数是质数,可以用费马小定理求逆元
int qmi(int a, int k, int p) // 快速幂模板
{
int res = 1;
while (k)
{
if (k & 1) res = (LL)res * a % p;
a = (LL)a * a % p;
k >>= 1;
}
return res;
}

// 预处理阶乘的余数和阶乘逆元的余数 fact[0] = infact[0] = 1; for (int i = 1; i < N; i ++ ) { fact[i] = (LL)fact[i - 1] * i % mod; infact[i] = (LL)infact[i - 1] * qmi(i, mod - 2, mod) % mod; }
5|15Lucas定理 —— 模板题 AcWing 887. 求组合数 III
若p是质数,则对于任意整数 1 <= m <= n,有: C(n, m) = C(n % p, m % p) * C(n / p, m / p) (mod p) int qmi(int a, int k, int p) // 快速幂模板 { int res = 1 % p; while (k) { if (k & 1) res = (LL)res * a % p; a = (LL)a * a % p; k >>= 1; } return res; } int C(int a, int b, int p) // 通过定理求组合数C(a, b) { if (a < b) return 0; LL x = 1, y = 1; // x是分子,y是分母 for (int i = a, j = 1; j <= b; i --, j ++ ) { x = (LL)x * i % p; y = (LL) y * j % p; } return x * (LL)qmi(y, p - 2, p) % p; } int lucas(LL a, LL b, int p) { if (a < p && b < p) return C(a, b, p); return (LL)C(a % p, b % p, p) * lucas(a / p, b / p, p) % p; }
5|16分解质因数法求组合数 —— 模板题 AcWing 888. 求组合数 IV

当我们需要求出组合数的真实值,而非对某个数的余数时,分解质因数的方式比较好用:
1. 筛法求出范围内的所有质数
2. 通过 C(a, b) = a! / b! / (a - b)! 这个公式求出每个质因子的次数。 n! 中p的次数是 n / p + n / p^2 + n / p^3 + ...
3. 用高精度乘法将所有质因子相乘

int primes[N], cnt; // 存储所有质数 int sum[N]; // 存储每个质数的次数 bool st[N]; // 存储每个数是否已被筛掉 void get_primes(int n) // 线性筛法求素数 { for (int i = 2; i <= n; i ++ ) { if (!st[i]) primes[cnt ++ ] = i; for (int j = 0; primes[j] <= n / i; j ++ ) { st[primes[j] * i] = true; if (i % primes[j] == 0) break; } } } int get(int n, int p) // 求n!中的次数 { int res = 0; while (n) { res += n / p; n /= p; } return res; } vector<int> mul(vector<int> a, int b) // 高精度乘低精度模板 { vector<int> c; int t = 0; for (int i = 0; i < a.size(); i ++ ) { t += a[i] * b; c.push_back(t % 10); t /= 10; } while (t) { c.push_back(t % 10); t /= 10; } return c; } get_primes(a); // 预处理范围内的所有质数 for (int i = 0; i < cnt; i ++ ) // 求每个质因数的次数 { int p = primes[i]; sum[i] = get(a, p) - get(b, p) - get(a - b, p); } vector<int> res; res.push_back(1); for (int i = 0; i < cnt; i ++ ) // 用高精度乘法将所有质因子相乘 for (int j = 0; j < sum[i]; j ++ ) res = mul(res, primes[i]);
5|17卡特兰数 —— 模板题 AcWing 889. 满足条件的01序列
给定n个0和n个1,它们按照某种顺序排成长度为2n的序列,满足任意前缀中0的个数都不少于1的个数的序列的数量为: Cat(n) = C(2n, n) / (n + 1)
5|18NIM游戏 —— 模板题 AcWing 891. Nim游戏

给定N堆物品,第i堆物品有Ai个。两名玩家轮流行动,每次可以任选一堆,取走任意多个物品,可把一堆取光,但不能不取。取走最后一件物品者获胜。两人都采取最优策略,问先手是否必胜。

我们把这种游戏称为NIM博弈。把游戏过程中面临的状态称为局面。整局游戏第一个行动的称为先手,第二个行动的称为后手。若在某一局面下无论采取何种行动,都会输掉游戏,则称该局面必败。
所谓采取最优策略是指,若在某一局面下存在某种行动,使得行动后对面面临必败局面,则优先采取该行动。同时,这样的局面被称为必胜。我们讨论的博弈问题一般都只考虑理想情况,即两人均无失误,都采取最优策略行动时游戏的结果。
NIM博弈不存在平局,只有先手必胜和先手必败两种情况。

定理: NIM博弈先手必胜,当且仅当 A1 ^ A2 ^ … ^ An != 0

公平组合游戏ICG
若一个游戏满足:

由两名玩家交替行动;
在游戏进程的任意时刻,可以执行的合法行动与轮到哪名玩家无关;
不能行动的玩家判负;
则称该游戏为一个公平组合游戏。
NIM博弈属于公平组合游戏,但城建的棋类游戏,比如围棋,就不是公平组合游戏。因为围棋交战双方分别只能落黑子和白子,胜负判定也比较复杂,不满足条件2和条件3。

5|19有向图游戏

给定一个有向无环图,图中有一个唯一的起点,在起点上放有一枚棋子。两名玩家交替地把这枚棋子沿有向边进行移动,每次可以移动一步,无法移动者判负。该游戏被称为有向图游戏。
任何一个公平组合游戏都可以转化为有向图游戏。具体方法是,把每个局面看成图中的一个节点,并且从每个局面向沿着合法行动能够到达的下一个局面连有向边。

5|20Mex运算

设S表示一个非负整数集合。定义mex(S)为求出不属于集合S的最小非负整数的运算,
即:mex(S) = min{x}, x属于自然数,且x不属于S

5|21SG函数

在有向图游戏中,对于每个节点x,设从x出发共有k条有向边,分别到达节点y1, y2, …, yk,定义SG(x)为x的后继节点y1, y2, …, yk 的SG函数值构成的集合再执行mex(S)运算的结果,
即:SG(x) = mex({SG(y1), SG(y2), …, SG(yk)})
特别地,整个有向图游戏G的SG函数值被定义为有向图游戏起点s的SG函数值,即SG(G) = SG(s)。

5|22有向图游戏的和 —— 模板题 AcWing 893. 集合-Nim游戏

设G1, G2, …, Gm 是m个有向图游戏。定义有向图游戏G,它的行动规则是任选某个有向图游戏Gi,并在Gi上行动一步。G被称为有向图游戏G1, G2, …, Gm的和。
有向图游戏的和的SG函数值等于它包含的各个子游戏SG函数值的异或和,即:
SG(G) = SG(G1) ^ SG(G2) ^ … ^ SG(Gm)

定理
有向图游戏的某个局面必胜,当且仅当该局面对应节点的SG函数值大于0。
有向图游戏的某个局面必败,当且仅当该局面对应节点的SG函数值等于0。


__EOF__

本文作者OJAC
本文链接https://www.cnblogs.com/zzybk/p/15779820.html
关于博主:评论和私信会在第一时间回复。或者直接私信我。
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角推荐一下。您的鼓励是博主的最大动力!
posted @   OJAC  阅读(23)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· PowerShell开发游戏 · 打蜜蜂
· 在鹅厂做java开发是什么体验
· 百万级群聊的设计实践
· WPF到Web的无缝过渡:英雄联盟客户端的OpenSilver迁移实战
· 永远不要相信用户的输入:从 SQL 注入攻防看输入验证的重要性
点击右上角即可分享
微信分享提示