洛谷P3830 [SHOI2012]随机树(期望dp)
题面
题解
第一问:
设\(f[i]\)表示\(i\)步操作后,平均深度期望
\(f[i] = \frac {f[i - 1] * (i - 1)+f[i-1]+2}{i}=f[i-1]+\frac{2}{i}\)
第二问就比较难受了:
\(E(x)=∑_{i=1}^{x}P\)
随机变量\(x\)的期望为对于所有\(i\),\(i≤x\)的概率之和
我们设\(f[i][j]\)表示\(i\)步后,树的深度\(>=j\)的概率
我们每次新建一个根,然后枚举左右子树分配节点情况
\(f[i][j] = \frac{1}{i-1}\sum_{k=1}^{i-1}(f[k][j-1]*1+f[i-k][j-1]*1-f[k][j-1]*f[i-k][j-1])\)
然后
\(Ans = \sum_{i=1}^{n-1}f[n][i]\)
Code
#include<bits/stdc++.h>
#define LL long long
#define RG register
using namespace std;
template<class T> inline void read(T &x) {
x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
x = f ? -x : x;
return ;
}
template<class T> inline void write(T x) {
if (!x) {putchar(48);return ;}
if (x < 0) x = -x, putchar('-');
int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
}
const int N = 110;
int q, n;
namespace cpp1 {
double f[N];
void main() {
for (int i = 2; i <= n; i++) f[i] = f[i - 1] + 2.0 / i;
printf("%lf\n", f[n]);
return ;
}
}
namespace cpp2 {
double f[N][N];
void main() {
for (int i = 1; i <= n; i++) f[i][0] = 1;
for (int i = 2; i <= n; i++)
for (int j = 1; j < n; j++) {
for (int k = 1; k < i; k++)
f[i][j] += f[k][j - 1] + f[i - k][j - 1] - f[k][j - 1] * f[i - k][j - 1];
f[i][j] /= (i - 1);
}
double ans = 0;
for (int i = 1; i < n; i++) ans += f[n][i];
printf("%lf\n", ans);
}
}
int main() {
read(q), read(n);
if (q == 1) cpp1 :: main();
else cpp2 :: main();
return 0;
}