神奇的树上启发式合并 (dsu on tree)
参考资料
https://www.cnblogs.com/zhoushuyu/p/9069164.html
https://www.cnblogs.com/candy99/p/dsuontree.html
https://www.cnblogs.com/zcysky/p/6822395.html
简介
树上启发式合并
用到了heavy−light decomposition树链剖分
把轻边子树的信息合并到重链上的点里
因为每次都是先dfs轻儿子再dfs重儿子,只有重儿子子树的贡献保留,所以可以保证dfs到每颗子树时当前全局维护的信息不会有别的子树里的,和莫队很像
算法实现
1.遍历轻儿子
2.遍历重儿子(保留数据)
3.计算所有轻儿子为根的子树
4.如果当前点是轻儿子,清空影响
复杂度分析
树链剖分后每个点到根的路径上有\(logn\)条轻边和\(logn\)条重链
每个点遇见轻边时合并一次,所以至多\(logn\)次
总复杂度\(O(nlogn)\)
例题
CF600E. Lomsat gelral
http://codeforces.com/contest/600/problem/E
题意:询问每颗子树中出现次数最多的颜色们编号和
板子题
Code
#include<bits/stdc++.h>
#define LL long long
#define RG register
using namespace std;
template<class T> inline void read(T &x) {
x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
x = f ? -x : x;
return ;
}
template<class T> inline void write(T x) {
if (!x) {putchar(48);return ;}
if (x < 0) x = -x, putchar('-');
int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
}
const int N = 1e5+10;
int c[N], n;
struct node {
int to, nxt;
}g[N<<1];
int last[N], gl;
void add(int x, int y) {
g[++gl] = (node) {y, last[x]};
last[x] = gl;
}
int son[N], siz[N];
void dfs1(int u, int f) {
siz[u] = 1;
for (int i = last[u]; i; i = g[i].nxt) {
int v = g[i].to;
if (v == f) continue;
dfs1(v, u);
siz[u] += siz[v];
if (siz[son[u]] < siz[v]) son[u] = v;
}
return ;
}
int num[N], top;
LL sum[N], ans[N];
bool vis[N];
void calc(int u, int fa, int k) {
sum[num[c[u]]] -= c[u];
num[c[u]] += k;
sum[num[c[u]]] += c[u];
if (sum[top + 1]) top++;
else if (!sum[top]) top--;
for (int i = last[u]; i; i = g[i].nxt) {
int v = g[i].to;
if (v == fa || vis[v]) continue;
calc(v, u, k);
}
return ;
}
void dfs(int u, int fa, int op) {
for (int i = last[u]; i; i = g[i].nxt)
if (g[i].to != fa && g[i].to != son[u])
dfs(g[i].to, u, 0);
if (son[u])
dfs(son[u], u, 1), vis[son[u]] = 1;
calc(u, fa, 1); vis[son[u]] = 0;
ans[u] = sum[top];
if (!op) calc(u, fa, -1);
return ;
}
int main() {
read(n);
for (int i = 1; i <= n; i++) read(c[i]);
for (int i = 1; i < n; i++) {
int x, y; read(x), read(y);
add(x, y), add(y, x);
}
dfs1(1, 0);
dfs(1, 0, 1);
for (int i = 1; i <= n; i++)
printf("%I64d ", ans[i]);
return 0;
}
CF570D Tree Requests
http://codeforces.com/problemset/problem/570/D
https://www.luogu.org/problemnew/show/CF570D
构成回文串,奇数个的字母至多一个
用二进制状压判断即可
\(sum[x]\)表示深度为\(x\)构成的状态
#include<bits/stdc++.h>
#define LL long long
#define RG register
using namespace std;
template<class T> inline void read(T &x) {
x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
x = f ? -x : x;
return ;
}
template<class T> inline void write(T x) {
if (!x) {putchar(48);return ;}
if (x < 0) x = -x, putchar('-');
int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
}
const int N = 500010;
struct node {
int to, nxt;
}g[N<<1], q[N];
int last[N], gl;
int n, m;
void add(int x, int y) {
g[++gl] = (node) {y, last[x]};
last[x] = gl;
g[++gl] = (node) {x, last[y]};
last[y] = gl;
}
char s[N];
int siz[N], son[N], val[N], dep[N], sum[N];
bool vis[N];
void dfs1(int u, int fa) {
siz[u] = 1;
for (int i = last[u]; i; i = g[i].nxt) {
int v = g[i].to;
if (v == fa) continue;
dep[v] = dep[u] + 1;
dfs1(v, u);
siz[u] += siz[v];
if (siz[son[u]] < siz[v]) son[u] = v;
}
}
void calc(int u, int fa) {
sum[dep[u]] ^= val[u];
for (int i = last[u]; i; i = g[i].nxt) {
int v = g[i].to;
if (v == fa || vis[v]) continue;
calc(v, u);
}
return ;
}
struct Node {
int h, nxt;
}a[N];
bool ans[N];
int S[N];
bool cal(int x) {
int tmp = 0;
while (x) {
tmp++;
x -= (x & (-x));
}
return tmp <= 1;
}
void dfs(int u, int fa, int op) {
for (int i = last[u]; i; i = g[i].nxt) {
int v = g[i].to;
if (v == fa || son[u] == v) continue;
dfs(v, u, 0);
}
if (son[u]) dfs(son[u], u, 1), vis[son[u]] = 1;
calc(u, fa); vis[son[u]] = 0;
for (int i = S[u]; i; i = a[i].nxt)
ans[i] = cal(sum[a[i].h]);
if (!op) calc(u, fa);
return ;
}
int main() {
read(n), read(m);
for (int i = 2; i <= n; i++) {
int x; read(x);
add(x, i);
}
scanf("%s", s+1);
for (int i = 1; i <= n; i++) val[i] = 1<<(s[i]-'a');
dep[1] = 1;
dfs1(1, 0);
for (int i = 1; i <= m; i++) {
int h, v;
read(v), read(h);
a[i].nxt = S[v];
S[v] = i; a[i].h = h;
}
dfs(1, 0, 1);
for (int i = 1; i <= m; i++) puts(ans[i] ? "Yes" : "No");
return 0;
}