静态区间第K小(整体二分、主席树)

题目链接

题解

主席树入门题

但是这里给出整体二分解法

整体二分顾名思义是把所有操作放在一起二分

想想,如果求\([1-n]\)的第\(k\)小怎么二分求得?

我们可以二分答案\(k\)\(O(n)\)统计有多少个数小于等于\(k\)

如果对于每个询问都这么搞,肯定不行

我们可以发现,如果每次都搞一次,有许多算重复的地方

\(div(l, r, st, ed)\)表示\(k\)二分的区间\([l-r]\), 对应操作答案区间在\([st-ed]\)
(如果没看懂,先往下看。)

\(mid = (l+r)/2\)
对于每次的\(mid\), 我们把对\(k\)往左移还有贡献的 放在一起, 右移的放在一起,这样答案就在一个区间内

那么如何统计一段区间有多少个数比\(k\)大呢?
我们开一个树状数组,如果\(x\)位上的数大于\(k\),那么给\(x\)加上1
然后统计就是区间求和了

Code

#include<bits/stdc++.h>

#define LL long long
#define RG register

using namespace std;
const int N = 200010, INF = 1e9;
struct rec {
	int op, x, y, z;
}q[N<<1], lq[N<<1], rq[N<<1];
int n, m, tot, c[N], ans[N];
#define lowbit(x) (x&(-x))
void add(int x, int v) {
	while (x <= n) c[x] += v, x += lowbit(x);
	return ;
}
int sum(int x) {
	int res = 0;
	while (x > 0) res += c[x], x -= lowbit(x);
	return res;
}
int X[N], cnt;
inline int gi() {
	RG int x = 0; RG char c = getchar(); bool f = 0;
	while (c != '-' && (c < '0' || c > '9')) c = getchar();
	if (c == '-') c = getchar(), f = 1;
	while (c >= '0' && c <= '9') x = x*10+c-'0', c = getchar();
	return f ? -x : x;
}

void div(int l, int r, int st, int ed) {
	if (st > ed) return ;//[l~r]中没有答案
	if (l == r) {
		for (int i = st; i <= ed; i++)
			if (q[i].op) ans[q[i].op] = l;//记录答案
		return ;
	}
	int mid = (l + r) >> 1;
	int lt = 0, rt = 0;
	for (int i = st; i <= ed; i++) {
		if (!q[i].op) {
			if (q[i].y <= mid) add(q[i].x, 1), lq[++lt] = q[i];//k如果往左移,修改操作还有影响
			else rq[++rt] = q[i];
		}
		else {
			int res = sum(q[i].y) - sum(q[i].x-1);
			if (res >= q[i].z) lq[++lt] = q[i];//已经满足至少第K大了,K还可以调小
			else q[i].z -= res, /*把所有q[i].y<=mid的贡献减去,调大k时就不需要统计这些的贡献了*/rq[++rt] = q[i];
		}
	}
	for (int i = st; i <= ed; i++)
		if (!q[i].op && q[i].y <= mid) add(q[i].x, -1);//清除
	for (int i = 1; i <= lt; i++) q[st+i-1] = lq[i];
	for (int i = 1; i <= rt; i++) q[st+lt+i-1] = rq[i];
	div(l, mid, st, st+lt-1);
	div(mid+1, r, st+lt, ed);
	return ;
}

int main() {
	//freopen(".in", "r", stdin);
	//freopen(".out", "w", stdout);
	n = gi(); m = gi();
	for (int i = 1; i <= n; i++) {
		q[++tot].op = 0, q[tot].x = i, X[++cnt] = q[tot].y = gi();
	}
	sort(X+1, X+1+cnt); cnt = unique(X+1, X+cnt+1)-X-1;//离散化
	for (int i = 1; i <= n; i++)
		q[i].y = lower_bound(X+1, X+cnt+1, q[i].y)-X;
	for (int i = 1; i <= m; i++) {
		q[++tot].op = i; q[tot].x = gi();q[tot].y = gi();q[tot].z = gi();
	}
	div(1, n, 1, tot);
	for (int i = 1; i <= m; i++)
		printf("%d\n", X[ans[i]]);
	return 0;
}

posted @ 2018-12-20 08:04  zzy2005  阅读(617)  评论(0编辑  收藏  举报