C++编程指南(6-7)

六、函数设计

函数是C++/C程序的基本功能单元,其重要性不言而喻。函数设计的细微缺点很容易导致该函数被错用,所以光使函数的功能正确是不够的。本章重点论述函数的接口设计和内部实现的一些规则。

函数接口的两个要素是参数和返回值。C语言中,函数的参数和返回值的传递方式有两种:值传递(pass by value)和指针传递(pass by pointer)。C++ 语言中多了引用传递(pass by reference)。由于引用传递的性质象指针传递,而使用方式却象值传递,初学者常常迷惑不解,容易引起混乱,请先阅读6.6节“引用与指针的比较”。

6.1 参数的规则

【规则6-1-1参数的书写要完整,不要贪图省事只写参数的类型而省略参数名字。如果函数没有参数,则用void填充。

例如:

void SetValue(int width, int height); // 良好的风格

void SetValue(int, int); // 不良的风格

float GetValue(void); // 良好的风格

float GetValue(); // 不良的风格

【规则6-1-2参数命名要恰当,顺序要合理。

例如编写字符串拷贝函数StringCopy,它有两个参数。如果把参数名字起为str1和str2,例如

void StringCopy(char *str1, char *str2);

那么我们很难搞清楚究竟是把str1拷贝到str2中,还是刚好倒过来。

可以把参数名字起得更有意义,如叫strSource和strDestination。这样从名字上就可以看出应该把strSource拷贝到strDestination。

还有一个问题,这两个参数那一个该在前那一个该在后?参数的顺序要遵循程序员的习惯。一般地,应将目的参数放在前面,源参数放在后面。

如果将函数声明为:

void StringCopy(char *strSource, char *strDestination);

别人在使用时可能会不假思索地写成如下形式:

char str[20];

StringCopy(str, “Hello World”); // 参数顺序颠倒

【规则6-1-3如果参数是指针,且仅作输入用,则应在类型前加const,以防止该指针在函数体内被意外修改。

例如:

void StringCopy(char *strDestination,const char *strSource);

【规则6-1-4如果输入参数以值传递的方式传递对象,则宜改用“const &”方式来传递,这样可以省去临时对象的构造和析构过程,从而提高效率。

【建议6-1-1避免函数有太多的参数,参数个数尽量控制在5个以内。如果参数太多,在使用时容易将参数类型或顺序搞错。

【建议6-1-2尽量不要使用类型和数目不确定的参数。

C标准库函数printf是采用不确定参数的典型代表,其原型为:

int printf(const chat *format[, argument]…);

这种风格的函数在编译时丧失了严格的类型安全检查。

6.2 返回值的规则

【规则6-2-1不要省略返回值的类型。

C语言中,凡不加类型说明的函数,一律自动按整型处理。这样做不会有什么好处,却容易被误解为void类型。

C++语言有很严格的类型安全检查,不允许上述情况发生。由于C++程序可以调用C函数,为了避免混乱,规定任何C++/ C函数都必须有类型。如果函数没有返回值,那么应声明为void类型。

【规则6-2-2函数名字与返回值类型在语义上不可冲突。

违反这条规则的典型代表是C标准库函数getchar。

例如:

char c;

c = getchar();

if (c == EOF)

按照getchar名字的意思,将变量c声明为char类型是很自然的事情。但不幸的是getchar的确不是char类型,而是int类型,其原型如下:

int getchar(void);

由于c是char类型,取值范围是[-128127],如果宏EOF的值在char的取值范围之外,那么if语句将总是失败,这种“危险”人们一般哪里料得到!导致本例错误的责任并不在用户,是函数getchar误导了使用者。

【规则6-2-3不要将正常值和错误标志混在一起返回。正常值用输出参数获得,而错误标志用return语句返回。

回顾上例,C标准库函数的设计者为什么要将getchar声明为令人迷糊的int类型呢?他会那么傻吗?

在正常情况下,getchar的确返回单个字符。但如果getchar碰到文件结束标志或发生读错误,它必须返回一个标志EOF。为了区别于正常的字符,只好将EOF定义为负数(通常为负1)。因此函数getchar就成了int类型。

我们在实际工作中,经常会碰到上述令人为难的问题。为了避免出现误解,我们应该将正常值和错误标志分开。即:正常值用输出参数获得,而错误标志用return语句返回。

函数getchar可以改写成 BOOL GetChar(char *c);

虽然gechar比GetChar灵活,例如 putchar(getchar()); 但是如果getchar用错了,它的灵活性又有什么用呢?

【建议6-2-1有时候函数原本不需要返回值,但为了增加灵活性如支持链式表达,可以附加返回值。

例如字符串拷贝函数strcpy的原型:

char *strcpy(char *strDest,const char *strSrc);

strcpy函数将strSrc拷贝至输出参数strDest中,同时函数的返回值又是strDest。这样做并非多此一举,可以获得如下灵活性:

char str[20];

int  length = strlen( strcpy(str, “Hello World”) );

【建议6-2-2如果函数的返回值是一个对象,有些场合用“引用传递”替换“值传递”可以提高效率。而有些场合只能用“值传递”而不能用“引用传递”,否则会出错。

例如:

class String

{…

// 赋值函数

String & operate=(const String &other);

// 相加函数,如果没有friend修饰则只许有一个右侧参数

friend String   operate+( const String &s1, const String &s2);

private:

char *m_data;

}

String的赋值函数operate = 的实现如下:

String & String::operate=(const String &other)

{

if (this == &other)

return *this;

delete m_data;

m_data = new char[strlen(other.data)+1];

strcpy(m_data, other.data);

return *this; // 返回的是 *this的引用,无需拷贝过程

}

对于赋值函数,应当用“引用传递”的方式返回String对象。如果用“值传递”的方式,虽然功能仍然正确,但由于return语句要把 *this拷贝到保存返回值的外部存储单元之中,增加了不必要的开销,降低了赋值函数的效率。例如:

String a,b,c;

a = b; // 如果用“值传递”,将产生一次 *this 拷贝

a = b = c; // 如果用“值传递”,将产生两次 *this 拷贝

String的相加函数operate + 的实现如下:

String  operate+(const String &s1, const String &s2)  

{

String temp;

delete temp.data; // temp.data是仅含‘\0’的字符串

temp.data = new char[strlen(s1.data) + strlen(s2.data) +1];

strcpy(temp.data, s1.data);

strcat(temp.data, s2.data);

return temp;

}

对于相加函数,应当用“值传递”的方式返回String对象。如果改用“引用传递”,那么函数返回值是一个指向局部对象temp“引用”。由于temp在函数结束时被自动销毁,将导致返回的“引用”无效。例如:

c = a + b;

此时 a + b 并不返回期望值,c什么也得不到,流下了隐患。

6.3 函数内部实现的规则

不同功能的函数其内部实现各不相同,看起来似乎无法就“内部实现”达成一致的观点。但根据经验,我们可以在函数体的“入口处”和“出口处”从严把关,从而提高函数的质量。

【规则6-3-1在函数体的“入口处”,对参数的有效性进行检查。

很多程序错误是由非法参数引起的,我们应该充分理解并正确使用“断言”(assert)来防止此类错误。详见6.5节“使用断言”。

【规则6-3-2在函数体的“出口处”,对return语句的正确性和效率进行检查。

    如果函数有返回值,那么函数的“出口处”是return语句。我们不要轻视return语句。如果return语句写得不好,函数要么出错,要么效率低下。

注意事项如下:

1return语句不可返回指向“栈内存”的“指针”或者“引用”,因为该内存在函数体结束时被自动销毁。例如

char * Func(void)

{

char str[] = hello world; // str的内存位于栈上

return str; // 将导致错误

}

2)要搞清楚返回的究竟是“值”、“指针”还是“引用”。

3)如果函数返回值是一个对象,要考虑return语句的效率。例如    

return String(s1 + s2);

这是临时对象的语法,表示“创建一个临时对象并返回它”。不要以为它与“先创建一个局部对象temp并返回它的结果”是等价的,如

String temp(s1 + s2);

return temp;

实质不然,上述代码将发生三件事。首先,temp对象被创建,同时完成初始化;然后拷贝构造函数把temp拷贝到保存返回值的外部存储单元中;最后,temp在函数结束时被销毁(调用析构函数)。然而“创建一个临时对象并返回它”的过程是不同的,编译器直接把临时对象创建并初始化在外部存储单元中,省去了拷贝和析构的化费,提高了效率。

类似地,我们不要将  

return int(x + y); // 创建一个临时变量并返回它

写成

int temp = x + y;

return temp;

由于内部数据类型如int,float,double的变量不存在构造函数与析构函数,虽然该“临时变量的语法”不会提高多少效率,但是程序更加简洁易读。

6.4 其它建议

【建议6-4-1函数的功能要单一,不要设计多用途的函数。

【建议6-4-2函数体的规模要小,尽量控制在50行代码之内。

【建议6-4-3尽量避免函数带有“记忆”功能。相同的输入应当产生相同的输出。

带有“记忆”功能的函数,其行为可能是不可预测的,因为它的行为可能取决于某种“记忆状态”。这样的函数既不易理解又不利于测试和维护。在C/C++语言中,函数的static局部变量是函数的“记忆”存储器。建议尽量少用static局部变量,除非必需。

【建议6-4-4不仅要检查输入参数的有效性,还要检查通过其它途径进入函数体内的变量的有效性,例如全局变量、文件句柄等。

【建议6-4-5用于出错处理的返回值一定要清楚,让使用者不容易忽视或误解错误情况。

6.5 使用断言

程序一般分为Debug版本和Release版本,Debug版本用于内部调试,Release版本发行给用户使用。

断言assert是仅在Debug版本起作用的宏,它用于检查“不应该”发生的情况。示例6-5是一个内存复制函数。在运行过程中,如果assert的参数为假,那么程序就会中止(一般地还会出现提示对话,说明在什么地方引发了assert)。

void  *memcpy(void *pvTo, const void *pvFrom, size_t size)

{

assert((pvTo != NULL) && (pvFrom != NULL)); // 使用断言

byte *pbTo = (byte *) pvTo; // 防止改变pvTo的地址

byte *pbFrom = (byte *) pvFrom; // 防止改变pvFrom的地址

while(size -- > 0 )

*pbTo ++ = *pbFrom ++ ;

return pvTo;

}

示例6-5 复制不重叠的内存块

 

assert不是一个仓促拼凑起来的宏。为了不在程序的Debug版本和Release版本引起差别,assert不应该产生任何副作用。所以assert不是函数,而是宏。程序员可以把assert看成一个在任何系统状态下都可以安全使用的无害测试手段。如果程序在assert处终止了,并不是说含有该assert的函数有错误,而是调用者出了差错,assert可以帮助我们找到发生错误的原因。

很少有比跟踪到程序的断言,却不知道该断言的作用更让人沮丧的事了。你化了很多时间,不是为了排除错误,而只是为了弄清楚这个错误到底是什么。有的时候,程序员偶尔还会设计出有错误的断言。所以如果搞不清楚断言检查的是什么,就很难判断错误是出现在程序中,还是出现在断言中。幸运的是这个问题很好解决,只要加上清晰的注释即可。这本是显而易见的事情,可是很少有程序员这样做。这好比一个人在森林里,看到树上钉着一块“危险”的大牌子。但危险到底是什么?树要倒?有废井?有野兽?除非告诉人们“危险”是什么,否则这个警告牌难以起到积极有效的作用。难以理解的断言常常被程序员忽略,甚至被删除。[Maguire, p8-p30]

【规则6-5-1使用断言捕捉不应该发生的非法情况。不要混淆非法情况与错误情况之间的区别,后者是必然存在的并且是一定要作出处理的。

【规则6-5-2】在函数的入口处,使用断言检查参数的有效性(合法性)。

【建议6-5-1在编写函数时,要进行反复的考查,并且自问:“我打算做哪些假定?”一旦确定了的假定,就要使用断言对假定进行检查。

【建议6-5-2一般教科书都鼓励程序员们进行防错设计,但要记住这种编程风格可能会隐瞒错误。当进行防错设计时,如果“不可能发生”的事情的确发生了,则要使用断言进行报警。

6.6 引用与指针的比较

引用是C++中的概念,初学者容易把引用和指针混淆一起。一下程序中,n是m的一个引用(reference),m是被引用物(referent)。

int m;

int &n = m;

n相当于m的别名(绰号),对n的任何操作就是对m的操作。例如有人名叫王小毛,他的绰号是“三毛”。说“三毛”怎么怎么的,其实就是对王小毛说三道四。所以n既不是m的拷贝,也不是指向m的指针,其实n就是m它自己。

引用的一些规则如下:

1)引用被创建的同时必须被初始化(指针则可以在任何时候被初始化)。

2)不能有NULL引用,引用必须与合法的存储单元关联(指针则可以是NULL)。

3)一旦引用被初始化,就不能改变引用的关系(指针则可以随时改变所指的对象)。

以下示例程序中,k被初始化为i的引用。语句k = j并不能将k修改成为j的引用,只是把k的值改变成为6。由于k是i的引用,所以i的值也变成了6。

int i = 5;

int j = 6;

int &k = i;

k = j; // k和i的值都变成了6;

上面的程序看起来象在玩文字游戏,没有体现出引用的价值。引用的主要功能是传递函数的参数和返回值。C++语言中,函数的参数和返回值的传递方式有三种:值传递、指针传递和引用传递。

以下是“值传递”的示例程序。由于Func1函数体内的x是外部变量n的一份拷贝,改变x的值不会影响n, 所以n的值仍然是0。

void Func1(int x)

{

x = x + 10;

}

int n = 0;

Func1(n);

cout << “n = ” << n << endl; // n = 0

以下是“指针传递”的示例程序。由于Func2函数体内的x是指向外部变量n的指针,改变该指针的内容将导致n的值改变,所以n的值成为10。

void Func2(int *x)

{

(* x) = (* x) + 10;

}

int n = 0;

Func2(&n);

cout << “n = ” << n << endl; // n = 10

以下是“引用传递”的示例程序。由于Func3函数体内的x是外部变量n的引用,x和n是同一个东西,改变x等于改变n,所以n的值成为10。

void Func3(int &x)

{

x = x + 10;

}

int n = 0;

Func3(n);

cout << “n = ” << n << endl; // n = 10

对比上述三个示例程序,会发现“引用传递”的性质象“指针传递”,而书写方式象“值传递”。实际上“引用”可以做的任何事情“指针”也都能够做,为什么还要“引用”这东西?

答案是“用适当的工具做恰如其分的工作”。

指针能够毫无约束地操作内存中的如何东西,尽管指针功能强大,但是非常危险。就象一把刀,它可以用来砍树、裁纸、修指甲、理发等等,谁敢这样用?

如果的确只需要借用一下某个对象的“别名”,那么就用“引用”,而不要用“指针”,以免发生意外。比如说,某人需要一份证明,本来在文件上盖上公章的印子就行了,如果把取公章的钥匙交给他,那么他就获得了不该有的权利。

七、 内存管理

欢迎进入内存这片雷区。伟大的Bill Gates 曾经失言:

640K ought to be enough for everybody

— Bill Gates 1981

程序员们经常编写内存管理程序,往往提心吊胆。如果不想触雷,唯一的解决办法就是发现所有潜伏的地雷并且排除它们,躲是躲不了的。本章的内容比一般教科书的要深入得多,读者需细心阅读,做到真正地通晓内存管理。

7.1内存分配方式

内存分配方式有三种:

(1) 从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。例如全局变量,static变量。

(2) 在栈上创建。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。

(3) 从堆上分配,亦称动态内存分配。程序在运行的时候用malloc或new申请任意多少的内存,程序员自己负责在何时用free或delete释放内存。动态内存的生存期由我们决定,使用非常灵活,但问题也最多。

7.2常见的内存错误及其对策

发生内存错误是件非常麻烦的事情。编译器不能自动发现这些错误,通常是在程序运行时才能捕捉到。而这些错误大多没有明显的症状,时隐时现,增加了改错的难度。有时用户怒气冲冲地把你找来,程序却没有发生任何问题,你一走,错误又发作了。

常见的内存错误及其对策如下:

内存分配未成功,却使用了它。

编程新手常犯这种错误,因为他们没有意识到内存分配会不成功。常用解决办法是,在使用内存之前检查指针是否为NULL。如果指针p是函数的参数,那么在函数的入口处用assert(p!=NULL)进行检查。如果是用malloc或new来申请内存,应该用if(p==NULL) if(p!=NULL)进行防错处理。

内存分配虽然成功,但是尚未初始化就引用它。

犯这种错误主要有两个起因:一是没有初始化的观念;二是误以为内存的缺省初值全为零,导致引用初值错误(例如数组)。

内存的缺省初值究竟是什么并没有统一的标准,尽管有些时候为零值,我们宁可信其无不可信其有。所以无论用何种方式创建数组,都别忘了赋初值,即便是赋零值也不可省略,不要嫌麻烦。

内存分配成功并且已经初始化,但操作越过了内存的边界。

例如在使用数组时经常发生下标“多1”或者“少1”的操作。特别是在for循环语句中,循环次数很容易搞错,导致数组操作越界。

忘记了释放内存,造成内存泄露。

含有这种错误的函数每被调用一次就丢失一块内存。刚开始时系统的内存充足,你看不到错误。终有一次程序突然死掉,系统出现提示:内存耗尽。

动态内存的申请与释放必须配对,程序中malloc与free的使用次数一定要相同,否则肯定有错误(new/delete同理)。

释放了内存却继续使用它。

有三种情况:

1)程序中的对象调用关系过于复杂,实在难以搞清楚某个对象究竟是否已经释放了内存,此时应该重新设计数据结构,从根本上解决对象管理的混乱局面。

2)函数的return语句写错了,注意不要返回指向“栈内存”的“指针”或者“引用”,因为该内存在函数体结束时被自动销毁。

3)使用free或delete释放了内存后,没有将指针设置为NULL。导致产生“野指针”。

【规则7-2-1用malloc或new申请内存之后,应该立即检查指针值是否为NULL。防止使用指针值为NULL的内存。

【规则7-2-2不要忘记为数组和动态内存赋初值。防止将未被初始化的内存作为右值使用。

【规则7-2-3避免数组或指针的下标越界,特别要当心发生“多1”或者“少1”操作。

【规则7-2-4动态内存的申请与释放必须配对,防止内存泄漏。

【规则7-2-5用free或delete释放了内存之后,立即将指针设置为NULL,防止产生“野指针”。

7.3指针与数组的对比

C++/C程序中,指针和数组在不少地方可以相互替换着用,让人产生一种错觉,以为两者是等价的。

数组要么在静态存储区被创建(如全局数组),要么在栈上被创建。数组名对应着(而不是指向)一块内存,其地址与容量在生命期内保持不变,只有数组的内容可以改变。

指针可以随时指向任意类型的内存块,它的特征是“可变”,所以我们常用指针来操作动态内存。指针远比数组灵活,但也更危险。

下面以字符串为例比较指针与数组的特性。

7.3.1 修改内容

示例7-3-1中,字符数组a的容量是6个字符,其内容为hello\0。a的内容可以改变,如a[0]= ‘X’。指针p指向常量字符串“world”(位于静态存储区,内容为world\0),常量字符串的内容是不可以被修改的。从语法上看,编译器并不觉得语句p[0]= ‘X’有什么不妥,但是该语句企图修改常量字符串的内容而导致运行错误。

char a[] = hello;

a[0] = X;

cout << a << endl;

char *p = world;     // 注意p指向常量字符串

p[0] = X;            // 编译器不能发现该错误

cout << p << endl;

示例7-3-1 修改数组和指针的内容

7.3.2 内容复制与比较

不能对数组名进行直接复制与比较。示例7-3-2中,若想把数组a的内容复制给数组b,不能用语句 b = a ,否则将产生编译错误。应该用标准库函数strcpy进行复制。同理,比较b和a的内容是否相同,不能用if(b==a) 来判断,应该用标准库函数strcmp进行比较。

语句p = a 并不能把a的内容复制指针p,而是把a的地址赋给了p。要想复制a的内容,可以先用库函数malloc为p申请一块容量为strlen(a)+1个字符的内存,再用strcpy进行字符串复制。同理,语句if(p==a) 比较的不是内容而是地址,应该用库函数strcmp来比较。

// 数组…

char a[] = "hello";

char b[10];

strcpy(b, a); // 不能用 b = a;

if(strcmp(b, a) == 0) // 不能用  if (b == a)

// 指针…

int len = strlen(a);

char *p = (char *)malloc(sizeof(char)*(len+1));

strcpy(p,a); // 不要用 p = a;

if(strcmp(p, a) == 0) // 不要用 if (p == a)

示例7-3-2 数组和指针的内容复制与比较

7.3.3 计算内存容量

用运算符sizeof可以计算出数组的容量(字节数)。示例7-3-3(a)中,sizeof(a)的值是12(注意别忘了’\0)。指针p指向a,但是sizeof(p)的值却是4。这是因为sizeof(p)得到的是一个指针变量的字节数,相当于sizeof(char*),而不是p所指的内存容量。C++/C语言没有办法知道指针所指的内存容量,除非在申请内存时记住它。

注意当数组作为函数的参数进行传递时,该数组自动退化为同类型的指针。示例7-3-3(b)中,不论数组a的容量是多少,sizeof(a)始终等于sizeof(char *)。

char a[] = "hello world";

char *p  = a;

cout<< sizeof(a) << endl; // 12字节

cout<< sizeof(p) << endl; // 4字节

示例7-3-3(a) 计算数组和指针的内存容量

 

void Func(char a[100])

{

cout<< sizeof(a) << endl; // 4字节而不是100字节

}

示例7-3-3(b 数组退化为指针

7.4指针参数是如何传递内存的?

如果函数的参数是一个指针,不要指望用该指针去申请动态内存。示例7-4-1中,Test函数的语句GetMemory(str, 200)并没有使str获得期望的内存,str依旧是NULL,为什么?

void GetMemory(char *p, int num)

{

p = (char *)malloc(sizeof(char) * num);

}

void Test(void)

{

char *str = NULL;

GetMemory(str, 100); // str 仍然为 NULL

strcpy(str, "hello"); // 运行错误

}

示例7-4-1 试图用指针参数申请动态内存

毛病出在函数GetMemory中。编译器总是要为函数的每个参数制作临时副本,指针参数p的副本是 _p,编译器使 _p = p。如果函数体内的程序修改了_p的内容,就导致参数p的内容作相应的修改。这就是指针可以用作输出参数的原因。在本例中,_p申请了新的内存,只是把_p所指的内存地址改变了,但是p丝毫未变。所以函数GetMemory并不能输出任何东西。事实上,每执行一次GetMemory就会泄露一块内存,因为没有用free释放内存。

如果非得要用指针参数去申请内存,那么应该改用“指向指针的指针”,见示例7-4-2

void GetMemory2(char **p, int num)

{

*p = (char *)malloc(sizeof(char) * num);

}

void Test2(void)

{

char *str = NULL;

GetMemory2(&str, 100); // 注意参数是 &str,而不是str

strcpy(str, "hello");

cout<< str << endl;

free(str);

}

示例7-4-2用指向指针的指针申请动态内存

由于“指向指针的指针”这个概念不容易理解,我们可以用函数返回值来传递动态内存。这种方法更加简单,见示例7-4-3

char *GetMemory3(int num)

{

char *p = (char *)malloc(sizeof(char) * num);

return p;

}

void Test3(void)

{

char *str = NULL;

str = GetMemory3(100);

strcpy(str, "hello");

cout<< str << endl;

free(str);

}

示例7-4-3 用函数返回值来传递动态内存

用函数返回值来传递动态内存这种方法虽然好用,但是常常有人把return语句用错了。这里强调不要用return语句返回指向“栈内存”的指针,因为该内存在函数结束时自动消亡,见示例7-4-4

char *GetString(void)

{

char p[] = "hello world";

return p; // 编译器将提出警告

}

void Test4(void)

{

char *str = NULL;

str = GetString(); // str 的内容是垃圾

cout<< str << endl;

}

示例7-4-4 return语句返回指向“栈内存”的指针

用调试器逐步跟踪Test4,发现执行str = GetString语句后str不再是NULL指针,但是str的内容不是“hello world而是垃圾。

如果把示例7-4-4改写成示例7-4-5,会怎么样?

char *GetString2(void)

{

char *p = "hello world";

return p;

}

void Test5(void)

{

char *str = NULL;

str = GetString2();

cout<< str << endl;

}

示例7-4-5 return语句返回常量字符串

函数Test5运行虽然不会出错,但是函数GetString2的设计概念却是错误的。因为GetString2内的“hello world”是常量字符串,位于静态存储区,它在程序生命期内恒定不变。无论什么时候调用GetString2,它返回的始终是同一个“只读”的内存块。

7.5 freedelete把指针怎么啦?

别看free和delete的名字恶狠狠的(尤其是delete),它们只是把指针所指的内存给释放掉,但并没有把指针本身干掉。

用调试器跟踪示例7-5,发现指针p被free以后其地址仍然不变(非NULL),只是该地址对应的内存是垃圾,p成了“野指针”。如果此时不把p设置为NULL,会让人误以为p是个合法的指针。

如果程序比较长,我们有时记不住p所指的内存是否已经被释放,在继续使用p之前,通常会用语句if (p != NULL)进行防错处理。很遗憾,此时if语句起不到防错作用,因为即便p不是NULL指针,它也不指向合法的内存块。

char *p = (char *) malloc(100);

strcpy(p, hello);

free(p);     // p 所指的内存被释放,但是p所指的地址仍然不变

if(p != NULL) // 没有起到防错作用

{

   strcpy(p, world); // 出错

}

示例7-5  p成为野指针

7.6 动态内存会被自动释放吗?

函数体内的局部变量在函数结束时自动消亡。很多人误以为示例7-6是正确的。理由是p是局部的指针变量,它消亡的时候会让它所指的动态内存一起完蛋。这是错觉!

 

void Func(void)

{

char *p = (char *) malloc(100); // 动态内存会自动释放吗?

}

示例7-6 试图让动态内存自动释放

我们发现指针有一些“似是而非”的特征:

1)指针消亡了,并不表示它所指的内存会被自动释放。

2)内存被释放了,并不表示指针会消亡或者成了NULL指针。

这表明释放内存并不是一件可以草率对待的事。也许有人不服气,一定要找出可以草率行事的理由:

如果程序终止了运行,一切指针都会消亡,动态内存会被操作系统回收。既然如此,在程序临终前,就可以不必释放内存、不必将指针设置为NULL了。终于可以偷懒而不会发生错误了吧?

想得美。如果别人把那段程序取出来用到其它地方怎么办?

7.7 杜绝“野指针”

“野指针”不是NULL指针,是指向“垃圾”内存的指针。人们一般不会错用NULL指针,因为用if语句很容易判断。但是“野指针”是很危险的,if语句对它不起作用。

“野指针”的成因主要有两种:

1)指针变量没有被初始化。任何指针变量刚被创建时不会自动成为NULL指针,它的缺省值是随机的,它会乱指一气。所以,指针变量在创建的同时应当被初始化,要么将指针设置为NULL,要么让它指向合法的内存。例如

char *p = NULL;

char *str = (char *) malloc(100);

2)指针p被free或者delete之后,没有置为NULL,让人误以为p是个合法的指针。参见7.5节。

3)指针操作超越了变量的作用范围。这种情况让人防不胜防,示例程序如下:

class A

{

public:

void Func(void){ cout << Func of class A<< endl; }

};

void Test(void)

{

A  *p;

{

A  a;

p = &a; // 注意 a 的生命期

}

p->Func(); // p“野指针”

}

函数Test在执行语句p->Func()时,对象a已经消失,而p是指向a的,所以p就成了“野指针”。但奇怪的是我运行这个程序时居然没有出错,这可能与编译器有关。

7.8 有了malloc/free为什么还要new/delete 

malloc与free是C++/C语言的标准库函数,new/delete是C++的运算符。它们都可用于申请动态内存和释放内存。

对于非内部数据类型的对象而言,光用maloc/free无法满足动态对象的要求。对象在创建的同时要自动执行构造函数,对象在消亡之前要自动执行析构函数。由于malloc/free是库函数而不是运算符,不在编译器控制权限之内,不能够把执行构造函数和析构函数的任务强加于malloc/free。

因此C++语言需要一个能完成动态内存分配和初始化工作的运算符new,以及一个能完成清理与释放内存工作的运算符delete。注意new/delete不是库函数。

我们先看一看malloc/free和new/delete如何实现对象的动态内存管理,见示例7-8。

class Obj

{

public :

Obj(void){ cout << Initialization<< endl; }

~Obj(void){ cout << Destroy<< endl; }

void Initialize(void){ cout << Initialization<< endl; }

void    Destroy(void){ cout << Destroy<< endl; }

};

void UseMallocFree(void)

{

Obj  *a = (obj *)malloc(sizeof(obj)); // 申请动态内存

a->Initialize(); // 初始化

//

a->Destroy(); // 清除工作

free(a); // 释放内存

}

void UseNewDelete(void)

{

Obj  *a = new Obj; // 申请动态内存并且初始化

//

delete a; // 清除并且释放内存

}

示例7-8 malloc/free和new/delete如何实现对象的动态内存管理

类Obj的函数Initialize模拟了构造函数的功能,函数Destroy模拟了析构函数的功能。函数UseMallocFree中,由于malloc/free不能执行构造函数与析构函数,必须调用成员函数Initialize和Destroy来完成初始化与清除工作。函数UseNewDelete则简单得多。

所以我们不要企图用malloc/free来完成动态对象的内存管理,应该用new/delete。由于内部数据类型的“对象”没有构造与析构的过程,对它们而言malloc/free和new/delete是等价的。

既然new/delete的功能完全覆盖了malloc/free,为什么C++不把malloc/free淘汰出局呢?这是因为C++程序经常要调用C函数,而C程序只能用malloc/free管理动态内存。

如果用free释放“new创建的动态对象”,那么该对象因无法执行析构函数而可能导致程序出错。如果用delete释放“malloc申请的动态内存”,理论上讲程序不会出错,但是该程序的可读性很差。所以new/delete必须配对使用,malloc/free也一样。

7.9 内存耗尽怎么办?

如果在申请动态内存时找不到足够大的内存块,malloc和new将返回NULL指针,宣告内存申请失败。通常有三种方式处理“内存耗尽”问题。

1)判断指针是否为NULL,如果是则马上用return语句终止本函数。例如:

void Func(void)

{

A  *a = new A;

if(a == NULL)

{

return;

}

}

2)判断指针是否为NULL,如果是则马上用exit(1)终止整个程序的运行。例如:

void Func(void)

{

A  *a = new A;

if(a == NULL)

{

cout << Memory Exhausted<< endl;

exit(1);

}

}

3)为new和malloc设置异常处理函数。例如Visual C++可以用_set_new_hander函数为new设置用户自己定义的异常处理函数,也可以让malloc享用与new相同的异常处理函数。详细内容请参考C++使用手册。

上述(1)(2)方式使用最普遍。如果一个函数内有多处需要申请动态内存,那么方式(1)就显得力不从心(释放内存很麻烦),应该用方式(2)来处理。

很多人不忍心用exit(1),问:“不编写出错处理程序,让操作系统自己解决行不行?”

不行。如果发生“内存耗尽”这样的事情,一般说来应用程序已经无药可救。如果不用exit(1) 把坏程序杀死,它可能会害死操作系统。道理如同:如果不把歹徒击毙,歹徒在老死之前会犯下更多的罪。

有一个很重要的现象要告诉大家。对于32位以上的应用程序而言,无论怎样使用malloc与new,几乎不可能导致“内存耗尽”。我在Windows 98下用Visual C++编写了测试程序,见示例7-9。这个程序会无休止地运行下去,根本不会终止。因为32位操作系统支持“虚存”,内存用完了,自动用硬盘空间顶替。我只听到硬盘嘎吱嘎吱地响,Window 98已经累得对键盘、鼠标毫无反应。

我可以得出这么一个结论:对于32位以上的应用程序,“内存耗尽”错误处理程序毫无用处。这下可把Unix和Windows程序员们乐坏了:反正错误处理程序不起作用,我就不写了,省了很多麻烦。

我不想误导读者,必须强调:不加错误处理将导致程序的质量很差,千万不可因小失大。

void main(void)

{

float *p = NULL;

while(TRUE)

{

p = new float[1000000];

cout << eat memory<< endl;

if(p==NULL)

exit(1);

}

}

示例7-9试图耗尽操作系统的内存

7.10 malloc/free 的使用要点

函数malloc的原型如下:

void * malloc(size_t size);

用malloc申请一块长度为length的整数类型的内存,程序如下:

int  *p = (int *) malloc(sizeof(int) * length);

我们应当把注意力集中在两个要素上:“类型转换”和“sizeof”。

malloc返回值的类型是void *,所以在调用malloc时要显式地进行类型转换,将void * 转换成所需要的指针类型。

malloc函数本身并不识别要申请的内存是什么类型,它只关心内存的总字节数。我们通常记不住int, float等数据类型的变量的确切字节数。例如int变量在16位系统下是2个字节,在32位下是4个字节;而float变量在16位系统下是4个字节,在32位下也是4个字节。最好用以下程序作一次测试:

cout << sizeof(char) << endl;

cout << sizeof(int) << endl;

cout << sizeof(unsigned int) << endl;

cout << sizeof(long) << endl;

cout << sizeof(unsigned long) << endl;

cout << sizeof(float) << endl;

cout << sizeof(double) << endl;

cout << sizeof(void *) << endl;

在malloc“()”中使用sizeof运算符是良好的风格,但要当心有时我们会昏了头,写出 p = malloc(sizeof(p))这样的程序来。

函数free的原型如下:

void free( void * memblock );

为什么free函数不象malloc函数那样复杂呢?这是因为指针p的类型以及它所指的内存的容量事先都是知道的,语句free(p)能正确地释放内存。如果p是NULL指针,那么free对p无论操作多少次都不会出问题。如果p不是NULL指针,那么free对p连续操作两次就会导致程序运行错误。

7.11 new/delete 的使用要点

运算符new使用起来要比函数malloc简单得多,例如:

int  *p1 = (int *)malloc(sizeof(int) * length);

int  *p2 = new int[length];

这是因为new内置了sizeof、类型转换和类型安全检查功能。对于非内部数据类型的对象而言,new在创建动态对象的同时完成了初始化工作。如果对象有多个构造函数,那么new的语句也可以有多种形式。例如

class Obj

{

public :

Obj(void); // 无参数的构造函数

Obj(int x); // 带一个参数的构造函数

}

void Test(void)

{

Obj  *a = new Obj;

Obj  *b = new Obj(1); // 初值为1

delete a;

delete b;

}

如果用new创建对象数组,那么只能使用对象的无参数构造函数。例如

Obj  *objects = new Obj[100]; // 创建100个动态对象

不能写成

Obj  *objects = new Obj[100](1);// 创建100个动态对象的同时赋初值1

在用delete释放对象数组时,留意不要丢了符号‘[]’。例如

delete []objects; // 正确的用法

delete objects; // 错误的用法

后者相当于delete objects[0],漏掉了另外99个对象。

7.12 一些心得体会

1)越是怕指针,就越要使用指针。不会正确使用指针,肯定算不上是合格的程序员。

2)必须养成“使用调试器逐步跟踪程序”的习惯,只有这样才能发现问题的本质。

总结:学会基础函数与指针数组,写C++程序就手拿把捏了。

                                改变自己,从现在做起-----------久馆

 

posted on 2020-12-07 21:18  DanielandCalf  阅读(153)  评论(0编辑  收藏  举报

导航