数据结构【图】—023邻接表深度和广度遍历

  1 #include "000库函数.h"
  2 //无向图
  3 
  4 #define MAXSIZE 9 /* 存储空间初始分配量 */
  5 #define MAXEDGE 15
  6 #define MAXVEX 9
  7 #define INFINITY 65535
  8 
  9 typedef int Status;    /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
 10 typedef int Boolean; /* Boolean是布尔类型,其值是TRUE或FALSE */
 11 
 12 typedef char VertexType; /* 顶点类型应由用户定义 */
 13 typedef int EdgeType; /* 边上的权值类型应由用户定义 */
 14 
 15 struct MGraph {//临接矩阵参数
 16     VertexType vexs[MAXVEX];
 17     EdgeType arc[MAXVEX][MAXVEX];
 18     int numVertexes, numEdges;
 19 };
 20 
 21 struct EdgeNode {//邻接表
 22     int adjvex;//节点
 23     EdgeType wt;//权重
 24     struct EdgeNode *next;//指针
 25 };
 26 
 27 struct VertexNode {//顶点表节点
 28     int in;//节点的入度
 29     VertexType data;
 30     EdgeNode *firstedge;
 31 };
 32 
 33 struct GraphAdjList {
 34     VertexNode adjList[MAXVEX];
 35     int numNodes, numEdges;
 36 };
 37 
 38 void CreateMGraph(MGraph **G) {
 39     (*G) = new MGraph;
 40     (*G)->numEdges = 15;
 41     (*G)->numVertexes = 9;
 42     /* 读入顶点信息,建立顶点表 */
 43     (*G)->vexs[0] = 'A';
 44     (*G)->vexs[1] = 'B';
 45     (*G)->vexs[2] = 'C';
 46     (*G)->vexs[3] = 'D';
 47     (*G)->vexs[4] = 'E';
 48     (*G)->vexs[5] = 'F';
 49     (*G)->vexs[6] = 'G';
 50     (*G)->vexs[7] = 'H';
 51     (*G)->vexs[8] = 'I';
 52 
 53 
 54     for (int i = 0; i < (*G)->numVertexes; ++i)/* 初始化图 */
 55     {
 56         for (int j = 0; j < (*G)->numVertexes; ++j)
 57         {
 58             (*G)->arc[i][j] = 0;
 59         }
 60     }
 61 
 62     (*G)->arc[0][1] = 1;
 63     (*G)->arc[0][5] = 1;
 64 
 65     (*G)->arc[1][2] = 1;
 66     (*G)->arc[1][8] = 1;
 67     (*G)->arc[1][6] = 1;
 68 
 69     (*G)->arc[2][3] = 1;
 70     (*G)->arc[2][8] = 1;
 71 
 72     (*G)->arc[3][4] = 1;
 73     (*G)->arc[3][7] = 1;
 74     (*G)->arc[3][6] = 1;
 75     (*G)->arc[3][8] = 1;
 76 
 77     (*G)->arc[4][5] = 1;
 78     (*G)->arc[4][7] = 1;
 79 
 80     (*G)->arc[5][6] = 1;
 81 
 82     (*G)->arc[6][7] = 1;
 83 
 84 
 85     for (int i = 0; i < (*G)->numVertexes; ++i)/* 初始化图 */
 86     {
 87         for (int j = 0; j < (*G)->numVertexes; ++j)
 88         {
 89             (*G)->arc[j][i] = (*G)->arc[i][j];
 90         }
 91     }
 92 
 93 }
 94 
 95 
 96 //构建临接表
 97 void CreateALGraph(MGraph *G, GraphAdjList **GL) {
 98     (*GL) = new GraphAdjList;
 99     (*GL)->numEdges = G->numEdges;
100     (*GL)->numNodes = G->numVertexes;
101     for (int i = 0; i < G->numVertexes; ++i) {
102         (*GL)->adjList[i].data = G->vexs[i];
103         (*GL)->adjList[i].firstedge = NULL;
104         (*GL)->adjList[i].in = 0;
105     }
106     for (int i = 0; i < G->numVertexes; ++i) {
107         for (int j = 0; j < G->numVertexes; ++j) {
108             if (G->arc[i][j] != 0) {
109                 EdgeNode *p = new EdgeNode;
110                 p->adjvex = j;
111                 p->wt = 1;
112                 p->next = (*GL)->adjList[i].firstedge;
113                 (*GL)->adjList[i].firstedge = p;
114                 (*GL)->adjList[i].in += 1;
115             }
116         }
117     }
118 
119 }
120 //深度遍历
121 vector<char>DFSRes;
122 void DFS(GraphAdjList *GL, vector <bool>&flag, EdgeNode *p) {
123     if (DFSRes.size() == GL->numNodes)return;
124     while (p) {
125         if (flag[p->adjvex]) {
126             DFSRes.push_back(GL->adjList[p->adjvex].data);//第一遍入栈,用来判断的
127             flag[p->adjvex] = false;
128             p = GL->adjList[p->adjvex].firstedge;//下一个点
129             DFS(GL, flag, p);
130             DFSRes.pop_back();//弹出栈,让后面回溯回来的元素入栈!
131         }
132         else
133             p = p->next;
134     }
135 }
136 
137 void DFSTraverse(GraphAdjList *GL) {
138     vector<bool>flag(GL->numNodes, true);//标志
139     for (int i = 0; i < GL->numNodes; ++i) {
140         DFSRes.push_back(GL->adjList[i].data);
141         flag[i] = false;
142         EdgeNode *p = GL->adjList[i].firstedge;
143         DFS(GL, flag, p);
144     }
145     cout << "/*****DFS*****/" << endl;
146     for (auto a : DFSRes)
147         cout << a << "->";
148     cout << endl;
149 }
150 
151 
152 //广度遍历
153 vector<char>BFSRes;
154 deque<int>dq;//压入节符号
155 
156 void BFS(GraphAdjList *GL, EdgeNode *p, vector<bool>&flag) {
157     BFSRes.push_back(GL->adjList[dq.front()].data);
158     dq.pop_front();    
159     while (p) {
160         if (flag[p->adjvex]) {//未遍历过
161             flag[p->adjvex] = false;            
162             dq.push_back(p->adjvex);            
163         }
164         p = p->next;
165     }
166     if (dq.empty())return ;
167     BFS(GL, GL->adjList[dq.front()].firstedge, flag);//下一个表
168 }
169 
170 
171 void BFSTraverse(GraphAdjList *GL) {
172     vector<bool>flag(GL->numNodes, true);//访问标志
173     dq.push_back(0);
174     flag[0] = false;
175     BFS(GL, GL->adjList[dq.front()].firstedge, flag);
176     cout << "/*****BFS*****/" << endl;
177     for (auto b : BFSRes)
178         cout << b << "->";
179     cout << endl;
180 }
181 
182 
183 
184 int T023(void)
185 {
186     MGraph *G;
187     GraphAdjList *GL;
188     CreateMGraph(&G);
189     CreateALGraph(G, &GL);
190 
191     //printf("\n深度遍历:");
192     //DFSTraverse(GL);
193     printf("\n广度遍历:");
194     BFSTraverse(GL);
195     return 0;
196 }

 

posted @ 2019-03-20 21:21  自由之翼Az  阅读(606)  评论(0编辑  收藏  举报