(gcd(a,b) == axorb)==>b = a-gcd(a,b)
\((gcd(a,b) == axorb)==>b = a-gcd(a,b)\)的证明
\[(gcd(a,b) == axorb)==>b = a-gcd(a,b)
\]
证明$$a-b>=gcd(a,b)$$
设\(gcd(a,b) = t\),那么\(a = k1*t,b = k2*t\),所以因为\(gcd(a,b) > 0\),所以\(axorb!=0\),假设a > b,所以\(a-b = c*t >= gcd(a,b)\) 。
证明$$a-b <= axorb$$,
把a,b换成二进制来按每位来考虑,共有四种可能$$(1,0) = (-)1 (xor)1||(1,1) = (-)0(xor)(0)||(0,1) = (-)-1(xor)1||(0,0) = (-)0(xor)0$$所以可以看出\(a-b <= axorb\).
因为\(gcd(a,b) == axorb\),所以有\(a-b == gcd(a,b)\);
题目链接
油!油!you@