spark-sql缩减版样例:获取每日top3搜索词和各自的次数,包括总次数

//获取出每天前3的搜索词
        ArrayList<String> log = new ArrayList<String>();
        log.add("2015-10-01,leo,a1,beijing,android");
        log.add("2015-10-01,leo,a1,beijing,android");
        log.add("2015-10-01,tom,a1,beijing,android");
        log.add("2015-10-01,jack,a1,beijing,android");
        log.add("2015-10-01,marry,a1,beijing,android");
        log.add("2015-10-01,tom,bbf,beijing,android");
        log.add("2015-10-01,jack,bbf,beijing,iphone");
        log.add("2015-10-01,jack,bbf,beijing,android");
        log.add("2015-10-01,leo,ttyu,beijing,android");
        log.add("2015-10-01,leo,ttyu,beijing,android");
        log.add("2015-10-01,wede,a1,beijing,android");
        log.add("2015-10-01,wede,bbf,beijing,iphone");
        log.add("2015-10-02,leo,a2,beijing,android");
        log.add("2015-10-02,tom,a2,beijing,android");
        log.add("2015-10-02,tom,a2,beijing,android");
        log.add("2015-10-02,jack,a1,beijing,android");
        log.add("2015-10-02,marry,a1,beijing,android");
        log.add("2015-10-02,leo,bbf,beijing,iphone");
        log.add("2015-10-02,jack,bbf,beijing,android");
        log.add("2015-10-02,wede,bbf,beijing,android");
        log.add("2015-10-02,leo,ttyu,beijing,android");
        log.add("2015-10-02,leo,ttyu,beijing,android");
        log.add("2015-10-02,jack,a1,beijing,android");
        log.add("2015-10-02,wede,tour,beijing,android");

        SparkConf conf = new SparkConf()
//                .setMaster("local")
                .setAppName("Top3UV");
        JavaSparkContext sc = new JavaSparkContext(conf);
        HiveContext sqlContext = new HiveContext(sc.sc());

        JavaRDD<String> rdd_list = sc.parallelize(log, 2);
        //0条件使用broadcast(每个worker节点共享一个变量)
        final org.apache.spark.broadcast.Broadcast<String> bc = sc.broadcast("iphone");

        //1条件过滤
        JavaRDD<String> rdd_filter_list = rdd_list.filter(new Function<String, Boolean>() {
            @Override
            public Boolean call(String v1) throws Exception {
                String ary[] = v1.split(",");
                String platform = ary[4];
                if (platform.contains(bc.value()))
                    return false;
                return true;
            }
        });
        //2将每行数据构建成tuple2
        JavaPairRDD<String, String> rdd_tuple2_list = rdd_filter_list.mapToPair(new PairFunction<String, String, String>() {
            @Override
            public Tuple2<String, String> call(String s) throws Exception {
                String ary[] = s.split(",");
                String time = ary[0];
                String word = ary[2];
                String userName = ary[1];
                return new Tuple2<String, String>(time + "_" + word, userName);
            }
        });
        //3按照tuple._1进行combiner
        JavaPairRDD<String, Iterable<String>> rdd_byKey = rdd_tuple2_list.groupByKey();

        //4按照tuple._1进行用户数量去重后的统计
        JavaPairRDD<String, Integer> rdd_byKey_uv = rdd_byKey.mapToPair(new PairFunction<Tuple2<String, Iterable<String>>, String, Integer>() {//tuple._1仍然为时间_搜索词,而tuple._2变为用户去重后的数量
            @Override
            public Tuple2<String, Integer> call(Tuple2<String, Iterable<String>> stringIterableTuple2) throws Exception {
                String tuple_1 = stringIterableTuple2._1();
                Iterable<String> userNames = stringIterableTuple2._2();
                Set<String> userNameSet = new HashSet<String>();
                for (String item : userNames) {
                    userNameSet.add(item);//用户名称
                }
                return new Tuple2<String, Integer>(tuple_1, userNameSet.size());
            }
        });

        //5构建rdd<Row>用来映射DataFrame
        JavaRDD<Row> rdd_byKey_row_uv = rdd_byKey_uv.map(new Function<Tuple2<String, Integer>, Row>() {
            @Override
            public Row call(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {
                String ary[] = stringIntegerTuple2._1().split("_");
                return RowFactory.create(ary[0], ary[1], stringIntegerTuple2._2());
            }
        });

        List<StructField> list = new ArrayList<StructField>();
        list.add(DataTypes.createStructField("date", DataTypes.StringType, true));
        list.add(DataTypes.createStructField("word", DataTypes.StringType, true));
        list.add(DataTypes.createStructField("uv_num", DataTypes.IntegerType, true));
        StructType tmpType = DataTypes.createStructType(list);
        DataFrame df_tuple = sqlContext.createDataFrame(rdd_byKey_row_uv, tmpType);
        df_tuple.registerTempTable("tuple_keyDS_valUN");

        //6使用DataFrame结合开窗函数row_number分组后过滤出访问量前3的搜索词
        StringBuilder _sb = new StringBuilder();
        _sb.append("select date,word,uv_num from ( ");
        _sb.append(" select date,word,uv_num, row_number() OVER (PARTITION BY date ORDER BY uv_num DESC ) as rank from tuple_keyDS_valUN ");
        _sb.append(" ) tmp_group_top3 where rank<=3");

        DataFrame df_tuple_groupTop3 = sqlContext.sql(_sb.toString()).cache();
        //df_tuple_groupTop3.show();//***************在最下面打印

        //=====到这里已经获取到每天前3的“搜索词“和“uv数“,并倒叙排序

        //在获取每天排名前三“搜索词”的总uv数

        //7将结果从DataFrame转换回rdd,并拼接成tuple2(日期,总访问量_访问词)
        JavaPairRDD<String, String> rdd_uvKey = df_tuple_groupTop3.javaRDD().mapToPair(new PairFunction<Row, String, String>() {
            @Override
            public Tuple2<String, String> call(Row row) throws Exception {
                String date = row.getString(0);
                String word = row.getString(1);
                Integer uv_mun = row.getInt(2);
                return new Tuple2<String, String>(date, uv_mun + "_" + word);
            }
        });

        //8mapToPair后继续按照key合并
        JavaPairRDD<String, Iterable<String>> rdd_dateKey_group = rdd_uvKey.groupByKey();

        JavaPairRDD<Integer, String> rdd_uvKey_combiner = rdd_dateKey_group.mapToPair(new PairFunction<Tuple2<String, Iterable<String>>, Integer, String>() {
            @Override
            public Tuple2<Integer, String> call(Tuple2<String, Iterable<String>> stringIterableTuple2) throws Exception {
                Integer uv_sum = 0;
                String data_word = "";
                Iterable<String> uv_word = stringIterableTuple2._2();
                Iterator<String> uv_word_it = uv_word.iterator();
                for (; uv_word_it.hasNext(); ) {
                    String uv_word_str = uv_word_it.next();
                    String ary[] = uv_word_str.split("_");
                    Integer uv = Integer.valueOf(ary[0]);
                    uv_sum += uv;//累加总uv数
                    String word = ary[1];
                    data_word += stringIterableTuple2._1() + "_" + word + "|";
                }

                return new Tuple2<Integer, String>(uv_sum, data_word);
            }
        });

        JavaPairRDD<Integer, String> rdd_uvKey_sort = rdd_uvKey_combiner.sortByKey(false);

        List<Tuple2<Integer, String>> ret = rdd_uvKey_sort.collect();
        for (Tuple2<Integer, String> item : ret) {
            System.out.println(item._1() + "<--->" + item._2());
        }
        df_tuple_groupTop3.show();

 

posted @ 2018-04-10 22:50  soft.push("zzq")  Views(555)  Comments(0Edit  收藏  举报