kafka-->spark-->phoenix

一、在IDEA新建一个maven项目:

1.[pom.xml]:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com</groupId>
<artifactId>SparkPhoenixDemo</artifactId>
<version>1.0-SNAPSHOT</version>
<name>${project.artifactId}</name>
<description>My wonderfull scala app</description>
<inceptionYear>2010</inceptionYear>
<licenses>
<license>
<name>My License</name>
<url>http://....</url>
<distribution>repo</distribution>
</license>
</licenses>
<properties>
<maven.compiler.source>1.6</maven.compiler.source>
<maven.compiler.target>1.6</maven.compiler.target>
<encoding>UTF-8</encoding>
<scala.tools.version>2.11</scala.tools.version>
<scala.version>2.11.12</scala.version>
</properties>

<dependencies>
<!-- https://mvnrepository.com/artifact/com.fasterxml.jackson.core/jackson-core -->
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-core</artifactId>
<version>2.6.3</version>
</dependency>
<!-- https://mvnrepository.com/artifact/com.fasterxml.jackson.core/jackson-databind -->
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.6.3</version>
</dependency>
<!-- https://mvnrepository.com/artifact/com.fasterxml.jackson.core/jackson-annotations -->
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-annotations</artifactId>
<version>2.6.3</version>
</dependency> <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core --> <dependency> <groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.3.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.3.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.kafka/kafka-clients -->
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>0.11.0.1</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming-kafka-0-10 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
<version>2.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
<version>2.3.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>2.3.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-graphx -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-graphx_2.11</artifactId>
<version>2.3.0</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-client</artifactId>
<version>1.4.8</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-server</artifactId>
<version>1.4.8</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.hbase/hbase-common -->
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-common</artifactId>
<version>1.4.8</version>
</dependency>
<!--<dependency>-->
<!--<groupId>org.apache.hbase</groupId>-->
<!--<artifactId>hbase-mapreduce</artifactId>-->
<!--<version>2.0.0</version>-->
<!--</dependency>-->
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.39</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.phoenix/phoenix-spark -->
<dependency>
<groupId>org.apache.phoenix</groupId>
<artifactId>phoenix-spark</artifactId>
<version>4.14.0-HBase-1.4</version>
</dependency>
<dependency>
<groupId>com.lmax</groupId>
<artifactId>disruptor</artifactId>
<version>3.3.8</version>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<!-- flink -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-scala_2.11</artifactId>
<version>1.6.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-scala_2.11</artifactId>
<version>1.6.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_2.11</artifactId>
<version>1.6.1</version>
</dependency>
<!-- spark-mllib -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.11</artifactId>
<version>2.3.0</version>
</dependency>
<dependency>
<groupId>org.jblas</groupId>
<artifactId>jblas</artifactId>
<version>1.2.3</version>
</dependency>
</dependencies>
<build>
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test/scala</testSourceDirectory>
<plugins>
<plugin>
<!-- see http://davidb.github.com/scala-maven-plugin -->
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.1.3</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
<configuration>
<args>
<arg>-dependencyfile</arg>
<arg>${project.build.directory}/.scala_dependencies</arg>
</args>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.13</version>
<configuration>
<useFile>false</useFile>
<disableXmlReport>true</disableXmlReport>
<!-- If you have classpath issue like NoDefClassError,... -->
<!-- useManifestOnlyJar>false</useManifestOnlyJar -->
<includes>
<include>**/*Test.*</include>
<include>**/*Suite.*</include>
</includes>
</configuration>
</plugin>
</plugins>
</build>
</project>


二、新建一个类SparkKafkaconsumer:
import kafka.serializer.StringDecoder
import org.apache.spark.{SparkConf}
import org.apache.spark.streaming.{Duration, StreamingContext}
import org.apache.spark.streaming.kafka.KafkaUtils

object SparkKafkaconsumer {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf()
.setMaster("local[*]")
.setAppName("SparkStreamingKafka_Direct")
sparkConf.set("spark.streaming.backpressure.enabled","true")
val ssc = new StreamingContext(sparkConf,Duration(5000))
val topics=Set("test3") //我们需要消费的kafka数据的topic
val kafkaParams=Map(
"metadata.broker.list"->"slave1:9092,slave2:9092,slave3:9092",// kafka的broker list地址
"group.id"->"Kafka_Direct"
)

//创建一个从kafka获取数据的流
val messages = KafkaUtils.createDirectStream[String,String,StringDecoder,StringDecoder](ssc,kafkaParams,topics)

// 取出value
val lines = messages.map(_._2)

lines.foreachRDD(
rdd => {
val data = rdd.collect
data.foreach(record => {
SparkConnectionScalaNew.runmain(record,ssc)
})
}
)


ssc.start()// 真正启动程序
ssc.awaitTermination()//阻塞等待
}
}


三、新建一个类:SparkConnectionScalaNew

import java.util.UUID

import org.apache.spark.streaming.StreamingContext

object SparkConnectionScalaNew {
def runmain(keyValues:String,ssc:StreamingContext): Unit ={
val uuid = UUID.randomUUID().toString
SparkKafkaMessNew.messMain(keyValues,ssc,uuid)
}
}


四、新建一个类:SparkKafkaMessNew
import java.text.SimpleDateFormat
import java.util.Date

import org.apache.spark.sql.SQLContext
import org.apache.spark.streaming.StreamingContext

import scala.util.parsing.json.JSON
import org.apache.phoenix.spark._

object SparkKafkaMessNew {

def regJson(json:Option[Any]) = json match {
case Some(map: Map[String, Any]) => map
}


def messMain(mess:String,ssc:StreamingContext,uuid:String): Unit ={
val jsonS = JSON.parseFull(mess)
val first = regJson(jsonS)

println(mess)//{"hello":"aa"}
println(first)//Map(hello -> aa)

val res = first.get("hello").toString//Some(aa)
val name = res.replace("Some(","").replace(")","").trim//aa

val date = new Date()
val df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
val dateRe = df.format(date)



val sc = ssc.sparkContext
val sqlContext = new SQLContext(sc)

val dataSet = List((uuid,name,dateRe))
sc.parallelize(dataSet).saveToPhoenix(
"TEST1.STUDENT", //表名
Seq("ID","NAME","CREATETIME"),//字段名
zkUrl = Some("slave1:2181")
)
}
}
 
posted @ 2019-01-30 15:19  初见微凉i  阅读(975)  评论(0编辑  收藏  举报