摘要:
"题目链接" 竟然是IOI的题目!我惊了! 结论,每只鞋子,找最近的去匹配,就是最优的 证明见 "木木 !的博客" 我们于是有朴素算法 先将鞋子按照左右脚分类,再按值分类 然后从后往前依次配对所有鞋子 首先能配对的鞋子必定在它之前的,所以只用找对应的vector里的最后一只,然后坐标减一减就是贡献, 阅读全文
摘要:
"题目链接" 本来感觉是贪心,但是懒得去想,于是直接$DP$出解 $dp[p][i][j][k]$ 表示到第$p$位,有$i$个$A$,$j$个$B$,$k$个$C$的最小装箱次数 初始化: $dp[0][0][0][0]=0$ 其余为$inf$ 转移: 1. $i+j+k=10$,$dp[p][i 阅读全文
摘要:
"题目链接" 首先数学推导 $$ \frac{1}{x} + \frac{1}{y} = \frac{1}{n!} \\\frac{x+y}{xy} = \frac{1}{n!}\\(x+y)n! = xy \\xy (x+y)n! = 0 \\xy (x+y)n! + (n!)^2 = (n!)^ 阅读全文