算法复杂度与稳定性
时间复杂度是一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度,算法所耗时长和算法的时间复杂度成正比。记为T(n)。
排序法 |
最差时间分析 | 平均时间复杂度 | 稳定度 | 空间复杂度 |
冒泡排序 | O(n2) | O(n2) | 稳定 | O(1) |
快速排序 | O(n2) | O(n*log2n) | 不稳定 | O(log2n)~O(n) |
选择排序 | O(n2) | O(n2) | 不稳定 | O(1) |
二叉树排序 | O(n2) | O(n*log2n) | 不一定 | O(n) |
插入排序 |
O(n2) | O(n2) | 稳定 | O(1) |
堆排序 | O(n*log2n) | O(n*log2n) | 不稳定 | O(1) |
希尔排序 | O | O | 不稳定 | O(1) |
排序算法的稳定性,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。在简单形式化一下,如果a[i] = a[j],a[i]原来在位置前,排序后a[i]还是要在a[j]位置前。
选择排序、快速排序、希尔排序、堆排序不是稳定的排序算法,而冒泡排序、插入排序、归并排序和基数排序是稳定的排序算法