《数据结构与算法之美》 <07>队列:队列在线程池等有限资源池中的应用?

我们知道,CPU 资源是有限的,任务的处理速度与线程个数并不是线性正相关。相反,过多的线程反而会导致 CPU 频繁切换,处理性能下降。所以,线程池的大小一般都是综合考虑要处理任务的特点和硬件环境,来事先设置的

当我们向固定大小的线程池中请求一个线程时,如果线程池中没有空闲资源了,这个时候线程池如何处理这个请求?是拒绝请求还是排队请求?各种处理策略又是怎么实现的呢?

实际上,这些问题并不复杂,其底层的数据结构就是我们今天要学的内容,队列(queue)

 

 

如何理解“队列”?

队列这个概念非常好理解。你可以把它想象成排队买票,先来的先买,后来的人只能站末尾,不允许插队。先进者先出,这就是典型的“队列”。

我们知道,栈只支持两个基本操作:入栈 push()和出栈 pop()。队列跟栈非常相似,支持的操作也很有限,最基本的操作也是两个:入队 enqueue(),放一个数据到队列尾部;出队 dequeue(),从队列头部取一个元素。

所以,队列跟栈一样,也是一种操作受限的线性表数据结构

队列的概念很好理解,基本操作也很容易掌握。作为一种非常基础的数据结构,队列的应用也非常广泛,特别是一些具有某些额外特性的队列,比如循环队列、阻塞队列、并发队列。它们在很多偏底层系统、框架、中间件的开发中,起着关键性的作用。比如高性能队列 Disruptor、Linux 环形缓存,都用到了循环并发队列;Java concurrent 并发包利用 ArrayBlockingQueue 来实现公平锁等。

 

 

顺序队列和链式队列

我们知道了,队列跟栈一样,也是一种抽象的数据结构。它具有先进先出的特性,支持在队尾插入元素,在队头删除元素,那究竟该如何实现一个队列呢?

跟栈一样,队列可以用数组来实现,也可以用链表来实现。用数组实现的栈叫作顺序栈用链表实现的栈叫作链式栈。同样,用数组实现的队列叫作顺序队列用链表实现的队列叫作链式队列

我们先来看下基于数组的实现方法。我用 Java 语言实现了一下,不过并不包含 Java 语言的高级语法,而且我做了比较详细的注释,你应该可以看懂。

// 用数组实现的队列
public class ArrayQueue {
  // 数组:items,数组大小:n
  private String[] items;
  private int n = 0;
  // head表示队头下标,tail表示队尾下标
  private int head = 0;
  private int tail = 0;

  // 申请一个大小为capacity的数组
  public ArrayQueue(int capacity) {
    items = new String[capacity];
    n = capacity;
  }

  // 入队
  public boolean enqueue(String item) {
    // 如果tail == n 表示队列已经满了
    if (tail == n) return false;
    items[tail] = item;
    ++tail;
    return true;
  }

  // 出队
  public String dequeue() {
    // 如果head == tail 表示队列为空
    if (head == tail) return null;
    // 为了让其他语言的同学看的更加明确,把--操作放到单独一行来写了
    String ret = items[head];
    ++head;
    return ret;
  }
}

比起栈的数组实现,队列的数组实现稍微有点儿复杂,但是没关系。我稍微解释一下实现思路,你很容易就能明白了。

对于栈来说,我们只需要一个栈顶指针就可以了。但是队列需要两个指针:一个是 head 指针,指向队头;一个是 tail 指针,指向队尾。

你可以结合下面这幅图来理解。当 a、b、c、d 依次入队之后,队列中的 head 指针指向下标为 0 的位置,tail 指针指向下标为 4 的位置。

当我们调用两次出队操作之后,队列中 head 指针指向下标为 2 的位置,tail 指针仍然指向下标为 4 的位置。

 

你肯定已经发现了,随着不停地进行入队、出队操作,head 和 tail 都会持续往后移动。当 tail 移动到最右边,即使数组中还有空闲空间,也无法继续往队列中添加数据了。这个问题该如何解决呢?

你是否还记得,在数组那一节,我们也遇到过类似的问题,就是数组的删除操作会导致数组中的数据不连续。你还记得我们当时是怎么解决的吗?对,用数据搬移!但是,每次进行出队操作都相当于删除数组下标为 0 的数据,要搬移整个队列中的数据,这样出队操作的时间复杂度就会从原来的 O(1) 变为 O(n)。能不能优化一下呢?

实际上,我们在出队时可以不用搬移数据。如果没有空闲空间了,我们只需要在入队时,再集中触发一次数据的搬移操作。借助这个思想,出队函数 dequeue() 保持不变,我们稍加改造一下入队函数 enqueue() 的实现,就可以轻松解决刚才的问题了。下面是具体的代码:

 

这种实现思路中,出队操作的时间复杂度仍然是 O(1),但入队操作的时间复杂度还是 O(1) 吗?你可以用我们第 3 节、第 4 节讲的算法复杂度分析方法,自己试着分析一下。

接下来,我们再来看下基于链表的队列实现方法

 

基于链表的实现,我们同样需要两个指针:head 指针和 tail 指针。它们分别指向链表的第一个结点和最后一个结点。如图所示,入队时,tail->next= new_node, tail = tail->next;出队时,head = head->next。我将具体的代码放到 GitHub 上,你可以自己试着实现一下,然后再去 GitHub 上跟我实现的代码对比下,看写得对不对。

 

posted @ 2019-12-05 14:37  进击的小牛牛  阅读(261)  评论(0编辑  收藏  举报