tensorflow 安装GPU版本,个人总结,步骤比较详细【转】
本文转载自:https://blog.csdn.net/gangeqian2/article/details/79358543
手把手教你windows安装tensorflow的教程参考另一篇博文http://mp.blog.csdn.net/postedit/79307696
此博文是在上文安装CUDA/cuDNN的基础上的个人填坑总结,欢迎指教。
CUDA
CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。 开发人员现在可以使用C语言来为CUDA™架构编写程序,C语言是应用最广泛的一种高级编程语言。所编写出的程序于是就可以在支持CUDA™的处理器上以超高性能运行。CUDA3.0已经开始支持C++和FORTRAN。
计算行业正在从只使用CPU的“中央处理”向CPU与GPU并用的“协同处理”发展。为打造这一全新的计算典范,NVIDIA™(英伟达™)发明了CUDA(Compute Unified Device Architecture,统一计算设备架构)这一编程模型,是想在应用程序中充分利用CPU和GPU各自的优点。现在,该架构已应用于GeForce™(精视™)、ION™(翼扬™)、Quadro以及Tesla GPU(图形处理器)上。
http://blog.csdn.net/shuiyuejihua/article/details/78738664
- 2017-12的时候,tensorflow 1.4不支持cuda9.0,且tensorflow1.0版本以上是不支持cuda8.0以下的。
- cuda8.0对应的cuDNN必须是6.0版的。
- cuda8.0,在cuda下载页面,Legacy Releases,找到旧版本下载地址,然后下载安装
- 最后成功安装,选择CUDA Toolkit 8.0 GA2+cuDNN v6.0 (April 27, 2017), for CUDA 8.0
笔者的显卡时Nvida GTX750 Ti,运算能力4以上,符合前一篇tensorflow安装GPU版本的要求。因此我们的安装均是安装的GPU版本,非GPU版本安装类似。
安装步骤可参考 http://blog.sina.com.cn/s/blog_14935c5880102wu86.html
Anaconda
Anaconda是由Python提供支持的领先的开放数据科学平台。 Anaconda的开源版本是Python和R的高性能分发版本,包括超过100个用于数据科学的最流行的Python,R和Scala软件包。
来自Anaconda官方下载页面
具体使用见Anaconda官方教程,简单易懂!
Anaconda初步学习
0.下载Anaconda安装包:Anaconda官方下载地址
我下载的是Anaconda4.4.10 For Windows 64bit(内置python3.6)
下载好了就安装,一直下一步。
1.检查Anaconda是否成功安装:conda --version
2.检测目前安装了哪些环境:conda info --envs
安装环境只有一个,不用担心。
3.检查目前有哪些版本的python可以安装:conda search --full-name python
(好多呀,要哪个呢?嘻嘻当然是python3.6啦)
4.安装不同版本的python:
对于GPU版本:conda create --name tensorflow-gpu python=3.6
对于CPU版本:conda create --name tensorflow python=3.6
(默认情况下会自动选择最新版本分支)
5.按照提示,激活之:activate tensorflow
(嘻嘻它有了一顶小帽子~代表我的当前环境哦)
6.确保名叫tensorflow的环境已经被成功添加:conda info --envs
(Bravo!)
7.检查新环境中的python版本:python --version
基本已经完成。
8.安装 tensorflow
命令行输入:pip install tensorflow-gpu,默认安装最新的tensorflow 版本1.5.0,
安装完成后使用 import tensorflow as tf 出现如下错误:
度娘后发现CUDA8.0 不支持tensorflow 1.5,故需要降低版本。(也可提升CUDA版本,不过需要注意CUDA与cudnn版本的对应,以及是否与电脑的GPU兼容,否则很容易入坑。cuda8对应 cudnn6,cuda9 对应cudnn7.)
卸载pip uninstall tensorflow-gpu-1.5.0
选择安装版本:pip install tensorflow-gpu==1.4.0
9.确认tensorflow安装成功:
错误尝试:直接在cmd里面键入python,然后键入import tensorflow as tf
遇到问题:No module named 'tensorflow' 是因为我们环境中包含了2个python环境,一个base,一个tensorflow-gpu,两个环境版本可以是一样的,笔者的均是3.6.4。
正确尝试:进入Anaconda Prompt-python里
输入:activate tensorflow-gpu 的环境,键入python,然后再键入import tensorflow as tf
在这里可以找到Anaconda Prompt-python:
10、tensorflow开发环境
(1)spyder
打开Anaconda Navigator(开始菜单->Anaconda 3->Anaconda Navigator),搞一个spyder玩,点击spyder下面的“install”,安装好就变成“Launch”了,点击就可以进去了。
在spyder里对tensorflow说Hello!
输出:
(2)、jupyter notebook 这个工具比较流行
Jupyter is a web application that allows you to create and share documents that contain live code, equations, visualizations and explanatory text.
安装完Anaconda后可直接打开jupyter notebook。或者在Anaconda Prompt中输入jupyter notebook
坑1:在jupyter notebook中新建.py文件,import tensorflow as tf,运行后又是那句之前见到过很多次的提示:not find module TensorFlow,想了一下,spyder 环境中会通过Application 选择 base 环境还是 tensorflow-gpu/tensorflow 环境,而jupyter notebook也需要选吧。一想还没激活环境呢。
坑2:退出jupyter notebook,在Anaconda Prompt 输入:activate tensorflow-gpu ,启动,依然是之前那个提示。
填坑:
之前我们在Anaconda安装好了TensorFlow,但要想在Jupyter notebook上使用,还不行,接着安装ipython(好像最新 都不需要重新装了),安装jupyter。
以上算是Anaconda安装好了TensorFlow,但要想在Jupyter notebook上使用,还没完。
接着安装ipython,安装jupyter。
第一步>>activate tensorflow-gpu
第二步>>conda install jupyter
安装完成后在打开jupyter notebook 运行