交叉熵理解

  • 信息量
  • 熵:对所有可能事件所带来的信息量求期望
  • 交叉熵:衡量两个分布更相似否?(在大小上,类似于点积)
    它主要刻画的是实际输出(概率)与期望输出(概率)的距离,也就是交叉熵的值越小,两个概率分布就越接近。

参考文献
引言
    在使用pytorch深度学习框架,计算损失函数的时候经常会遇到这么一个函数:

nn.CrossEntropyLoss()
    该损失函数结合了nn.LogSoftmax()和nn.NLLLoss()两个函数。它在做分类(具体几类)训练的时候是非常有用的。在训练过程中,对于每个类分配权值,可选的参数权值应该是一个1D张量。当你有一个不平衡的训练集时,这是是非常有用的。那么针对这个函数,下面将做详细的介绍。

什么是交叉熵?
交叉熵主要是用来判定实际的输出与期望的输出的接近程度,为什么这么说呢,举个例子:在做分类的训练的时候,如果一个样本属于第K类,那么这个类别所对应的的输出节点的输出值应该为1,而其他节点的输出都为0,即[0,0,1,0,….0,0],这个数组也就是样本的Label,是神经网络最期望的输出结果。也就是说用它来衡量网络的输出与标签的差异,利用这种差异经过反向传播去更新网络参数。

交叉熵原理?
在说交叉熵之前,先说一下信息量与熵。

信息量:它是用来衡量一个事件的不确定性的;一个事件发生的概率越大,不确定性越小,则它所携带的信息量就越小。假设X是一个离散型随机变量,其取值集合为X,概率分布函数为 ,我们定义事件 的信息量为: 当 时,熵将等于0,也就是说该事件的发生不会导致任何信息量的增加。

熵:它是用来衡量一个系统的混乱程度的,代表一个系统中信息量的总和;信息量总和越大,表明这个系统不确定性就越大。

举个例子:假如小明和小王去打靶,那么打靶结果其实是一个0-1分布,X的取值有{0:打中,1:打不中}。在打靶之前我们知道小明和小王打中的先验概率为10%,99.9%。根据上面的信息量的介绍,我们可以分别得到小明和小王打靶打中的信息量。但是如果我们想进一步度量小明打靶结果的不确定度,这就需要用到熵的概念了。那么如何度量呢,那就要采用期望了。我们对所有可能事件所带来的信息量求期望,其结果就能衡量小明打靶的不确定度:

与之对应的,小王的熵(打靶的不确定度)为:

虽然小明打靶结果的不确定度较低,毕竟十次有9次都脱靶;但是小王打靶结果的不确定度更低,1000次射击只有1次脱靶,结果相当的确定。

交叉熵:它主要刻画的是实际输出(概率)与期望输出(概率)的距离,也就是交叉熵的值越小,两个概率分布就越接近。假设概率分布p为期望输出,概率分布q为实际输出, 为交叉熵,则

那么该公式如何表示,举个例子,假设N=3,期望输出为 ,实际输出 , ,那么: 通过上面可以看出,q2与p更为接近,它的交叉熵也更小。

Pytorch中的CrossEntropyLoss()函数
    Pytorch中计算的交叉熵并不是采用

这种方式计算得到的,而是交叉熵的另外一种方式计算得到的:

它是交叉熵的另外一种方式。

Pytorch中CrossEntropyLoss()函数的主要是将softmax-log-NLLLoss合并到一块得到的结果。

1、Softmax后的数值都在0~1之间,所以ln之后值域是负无穷到0。

2、然后将Softmax之后的结果取log,将乘法改成加法减少计算量,同时保障函数的单调性 。

3、NLLLoss的结果就是把上面的输出与Label对应的那个值拿出来(下面例子中就是:将log_output\logsoftmax_output中与y_target对应的值拿出来),去掉负号,再求均值。 下面是我仿真写的一个例子:

点击查看代码
import torch
import torch.nn as nn
x_input=torch.randn(3,3)#随机生成输入 
print('x_input:\n',x_input) 
y_target=torch.tensor([1,2,0])#设置输出具体值 print('y_target\n',y_target)

#计算输入softmax,此时可以看到每一行加到一起结果都是1
softmax_func=nn.Softmax(dim=1)
soft_output=softmax_func(x_input)
print('soft_output:\n',soft_output)

#在softmax的基础上取log
log_output=torch.log(soft_output)
print('log_output:\n',log_output)

#对比softmax与log的结合与nn.LogSoftmaxloss(负对数似然损失)的输出结果,发现两者是一致的。
logsoftmax_func=nn.LogSoftmax(dim=1)
logsoftmax_output=logsoftmax_func(x_input)
print('logsoftmax_output:\n',logsoftmax_output)

#pytorch中关于NLLLoss的默认参数配置为:reducetion=True、size_average=True
nllloss_func=nn.NLLLoss()
nlloss_output=nllloss_func(logsoftmax_output,y_target)
print('nlloss_output:\n',nlloss_output)

#直接使用pytorch中的loss_func=nn.CrossEntropyLoss()看与经过NLLLoss的计算是不是一样
crossentropyloss=nn.CrossEntropyLoss()
crossentropyloss_output=crossentropyloss(x_input,y_target)
print('crossentropyloss_output:\n',crossentropyloss_output)
最后计算得到的结果为:

x_input:
 tensor([[ 2.8883,  0.1760,  1.0774],
        [ 1.1216, -0.0562,  0.0660],
        [-1.3939, -0.0967,  0.5853]])
y_target
 tensor([1, 2, 0])
soft_output:
 tensor([[0.8131, 0.0540, 0.1329],
        [0.6039, 0.1860, 0.2102],
        [0.0841, 0.3076, 0.6083]])
log_output:
 tensor([[-0.2069, -2.9192, -2.0178],
        [-0.5044, -1.6822, -1.5599],
        [-2.4762, -1.1790, -0.4970]])
logsoftmax_output:
 tensor([[-0.2069, -2.9192, -2.0178],
        [-0.5044, -1.6822, -1.5599],
        [-2.4762, -1.1790, -0.4970]])
nlloss_output:
 tensor(2.3185)
crossentropyloss_output:
 tensor(2.3185)

通过上面的结果可以看出,直接使用pytorch中的loss_func=nn.CrossEntropyLoss()计算得到的结果与softmax-log-NLLLoss计算得到的结果是一致的。

posted @ 2022-10-09 21:11  zae  阅读(346)  评论(0编辑  收藏  举报