Flink watermark 练习

生成WaterMark对应的源码

方式1:assignTimestampsAndWatermarks(new AssignerWithPeriodicWatermarks<T>)

/**
 * Assigns timestamps to the elements in the data stream and periodically creates
 * watermarks to signal event time progress.
 *
 * <p>This method creates watermarks periodically (for example every second), based
 * on the watermarks indicated by the given watermark generator. Even when no new elements
 * in the stream arrive, the given watermark generator will be periodically checked for
 * new watermarks. The interval in which watermarks are generated is defined in
 * {@link ExecutionConfig#setAutoWatermarkInterval(long)}.
 *
 * <p>Use this method for the common cases, where some characteristic over all elements
 * should generate the watermarks, or where watermarks are simply trailing behind the
 * wall clock time by a certain amount.
 *
 * <p>For the second case and when the watermarks are required to lag behind the maximum
 * timestamp seen so far in the elements of the stream by a fixed amount of time, and this
 * amount is known in advance, use the
 * {@link BoundedOutOfOrdernessTimestampExtractor}.
 *
 * <p>For cases where watermarks should be created in an irregular fashion, for example
 * based on certain markers that some element carry, use the
 * {@link AssignerWithPunctuatedWatermarks}.
 *
 * @param timestampAndWatermarkAssigner The implementation of the timestamp assigner and
 *                                      watermark generator.
 * @return The stream after the transformation, with assigned timestamps and watermarks.
 *
 * @see AssignerWithPeriodicWatermarks
 * @see AssignerWithPunctuatedWatermarks
 * @see #assignTimestampsAndWatermarks(AssignerWithPunctuatedWatermarks)
 */
public SingleOutputStreamOperator<T> assignTimestampsAndWatermarks(
      AssignerWithPeriodicWatermarks<T> timestampAndWatermarkAssigner) {
​
   // match parallelism to input, otherwise dop=1 sources could lead to some strange
   // behaviour: the watermark will creep along very slowly because the elements
   // from the source go to each extraction operator round robin.
   final int inputParallelism = getTransformation().getParallelism();
   final AssignerWithPeriodicWatermarks<T> cleanedAssigner = clean(timestampAndWatermarkAssigner);
​
   TimestampsAndPeriodicWatermarksOperator<T> operator =
         new TimestampsAndPeriodicWatermarksOperator<>(cleanedAssigner);
​
   return transform("Timestamps/Watermarks", getTransformation().getOutputType(), operator)
         .setParallelism(inputParallelism);
}

 

方式2:assignTimestampsAndWatermarks(new AssignerWithPunctuatedWatermarks<T>)

/**
 * Assigns timestamps to the elements in the data stream and creates watermarks to
 * signal event time progress based on the elements themselves.
 *
 * <p>This method creates watermarks based purely on stream elements. For each element
 * that is handled via {@link AssignerWithPunctuatedWatermarks#extractTimestamp(Object, long)},
 * the {@link AssignerWithPunctuatedWatermarks#checkAndGetNextWatermark(Object, long)}
 * method is called, and a new watermark is emitted, if the returned watermark value is
 * non-negative and greater than the previous watermark.
 *
 * <p>This method is useful when the data stream embeds watermark elements, or certain elements
 * carry a marker that can be used to determine the current event time watermark.
 * This operation gives the programmer full control over the watermark generation. Users
 * should be aware that too aggressive watermark generation (i.e., generating hundreds of
 * watermarks every second) can cost some performance.
 *
 * <p>For cases where watermarks should be created in a regular fashion, for example
 * every x milliseconds, use the {@link AssignerWithPeriodicWatermarks}.
 *
 * @param timestampAndWatermarkAssigner The implementation of the timestamp assigner and
 *                                      watermark generator.
 * @return The stream after the transformation, with assigned timestamps and watermarks.
 *
 * @see AssignerWithPunctuatedWatermarks
 * @see AssignerWithPeriodicWatermarks
 * @see #assignTimestampsAndWatermarks(AssignerWithPeriodicWatermarks)
 */
public SingleOutputStreamOperator<T> assignTimestampsAndWatermarks(
      AssignerWithPunctuatedWatermarks<T> timestampAndWatermarkAssigner) {
​
   // match parallelism to input, otherwise dop=1 sources could lead to some strange
   // behaviour: the watermark will creep along very slowly because the elements
   // from the source go to each extraction operator round robin.
   final int inputParallelism = getTransformation().getParallelism();
   final AssignerWithPunctuatedWatermarks<T> cleanedAssigner = clean(timestampAndWatermarkAssigner);
​
   TimestampsAndPunctuatedWatermarksOperator<T> operator =
         new TimestampsAndPunctuatedWatermarksOperator<>(cleanedAssigner);
​
   return transform("Timestamps/Watermarks", getTransformation().getOutputType(), operator)
         .setParallelism(inputParallelism);
}

 

WaterMarkDemo

5s跨度的基于事件时间的翻滚窗口统计每个商品的下单数

使用AssignerWithPeriodicWatermarks生成Watermark

    public static void main(String[] args) throws Exception {
​
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //设置为eventTime时间类型
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
        //设置Watermark生成时间间隔100ms
        env.getConfig().setAutoWatermarkInterval(100);
​
        DataStreamSource<String> source = env.socketTextStream("172.xx.x.xxx", 9001);//nc -lk 9001
        DataStream<String> dataStream = source.assignTimestampsAndWatermarks(new AssignerWithPeriodicWatermarks<String>() {
​
            private Long currentTimeStamp = 0L;
            //设置允许数据延迟的时间
            private Long maxOutOfOrderness = 5000L;
​
            @Override
            public Watermark getCurrentWatermark() {
                return new Watermark(currentTimeStamp - maxOutOfOrderness);
            }
​
            @Override
            public long extractTimestamp(String element, long previousElementTimestamp) {
                String[] arr = element.split(",");
                long eventTime = Long.parseLong(arr[2]);
                currentTimeStamp = Math.max(eventTime, currentTimeStamp);
                System.err.println("element:" + element + "; eventTime:" + eventTime + "; watermark:" + (currentTimeStamp - maxOutOfOrderness));
                return eventTime;
            }
        });
​
        //根据商品类型分组统计下单的个数
        //5s跨度的基于事件时间的翻滚窗口,执行统计时候是前闭后开的,比如0-5秒的时候,计算的数据是[0,5)
        dataStream.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String value) throws Exception {
                String[] split = value.split(",");
                return new Tuple2<>(split[0], Integer.parseInt(split[1]));
            }
        }).keyBy(0).window(TumblingEventTimeWindows.of(Time.seconds(5))).sum(1).print();
​
        env.execute();
    }

 

 

5s跨度的基于事件时间的翻滚窗口,执行统计时候是前闭后开的,比如0-5秒的时候,计算的数据是[0,5)

比如第一条来的数据是 tie,1,1590542810000(可以看成是第0秒的数据)

执行窗口统计触发条件是第5秒的数据过来,比如以下数据:

tie,1,1590542810000 
tie,2,1590542811000
shoes,1,1590542812000
cup,2,1590542813000
shoes,2,1590542814000
cup,3,1590542815000 --在这条数据过来之后触发window操作

统计的范围是:

tie,1,1590542810000 
tie,2,1590542811000
shoes,1,1590542812000
cup,2,1590542813000
shoes,2,1590542814000

 

不包括 cup,3,1590542815000 这条数据,也就是说这次窗口统计的结果是:

(cup,2)
(shoes,3)
(tie,3)

这个逻辑的前提是数据产生的时间(也就是event_time) 等于 watermark,不接受任何延迟数据

不同watermark定义下的数据延迟处理

如果出现数据延迟过来的情况,在我们定义watermark时候如果设置的允许数据延迟的时间为0的话(private Long maxOutOfOrderness = 0L),就会丢弃延迟的数据不作计算,比如以下情况:

element:tie,1,1590542810000; eventTime:1590542810000; watermark:1590542810000
element:tie,2,1590542811000; eventTime:1590542811000; watermark:1590542811000
element:shoes,1,1590542812000; eventTime:1590542812000; watermark:1590542812000
element:shoes,2,1590542814000; eventTime:1590542814000; watermark:1590542814000
element:cup,3,1590542815000; eventTime:1590542815000; watermark:1590542815000
6> (tie,3)
8> (shoes,3)
element:tie,3,1590542816000; eventTime:1590542816000; watermark:1590542816000
element:cup,2,1590542813000; eventTime:1590542813000; watermark:1590542816000  //这条数据出现乱序,注意看生成的watermark
element:tie,1,1590542817000; eventTime:1590542817000; watermark:1590542817000
element:cup,1,1590542818000; eventTime:1590542818000; watermark:1590542818000
element:shoes,1,1590542819000; eventTime:1590542819000; watermark:1590542819000
element:tie,1,1590542820000; eventTime:1590542820000; watermark:1590542820000
6> (tie,4)
3> (cup,4)
8> (shoes,1) 
​
可以发现:
1.第1次窗口计算是等到cup,3,1590542815000数据来了以后开始计算的。参与的数据是[0,5)秒
2.第2次窗口计算是等到tie,1,1590542820000数据来了以后开始计算的。参与的数据是[5,10)秒
3.两次窗口计算结果都不包含那条乱序的数据。
4.生成的watermark是递增的

 

如果允许数据延迟,比如延迟5秒,如下情况:

element:tie,1,1590542810000; eventTime:1590542810000; watermark:1590542805000
element:tie,2,1590542811000; eventTime:1590542811000; watermark:1590542806000
element:shoes,1,1590542812000; eventTime:1590542812000; watermark:1590542807000
element:shoes,2,1590542814000; eventTime:1590542814000; watermark:1590542809000
element:cup,3,1590542815000; eventTime:1590542815000; watermark:1590542810000
element:tie,3,1590542816000; eventTime:1590542816000; watermark:1590542811000
element:cup,2,1590542813000; eventTime:1590542813000; watermark:1590542811000
element:tie,1,1590542817000; eventTime:1590542817000; watermark:1590542812000
element:cup,1,1590542818000; eventTime:1590542818000; watermark:1590542813000
element:shoes,1,1590542819000; eventTime:1590542819000; watermark:1590542814000
element:tie,1,1590542820000; eventTime:1590542820000; watermark:1590542815000
6> (tie,3)
3> (cup,2)
8> (shoes,3)
element:cup,1,1590542821000; eventTime:1590542821000; watermark:1590542816000
​
可以发现:
1.在设置了允许延迟5秒以后,在第1个窗口统计时候,一直等到数据tie,1,1590542820000出现之后才触发计算
2.参与计算的数据仍然是[0,5)秒对应的数据
3.对应的watermark是递增的,即便出现了cup,2,1590542813000乱序数据,其整体watermark还是递增。

 

 

posted @ 2020-05-27 10:56  sw_kong  阅读(435)  评论(0编辑  收藏  举报