Spark自定义分区(Partitioner)

Spark提供了HashPartitioner和RangePartitioner两种分区策略

,这两种分区策略在很多情况下都适合我们的场景。但是有些情况下,Spark内部不能符合咱们的需求
,这时候我们就可以自定义分区策略。
为此,Spark提供了相应的接口,我们只需要扩展Partitioner抽象类,然后实现里面的方法。

 

Partitioner类如下

/**
 * An object that defines how the elements in a key-value pair RDD are partitioned by key.
 * Maps each key to a partition ID, from 0 to `numPartitions - 1`.
 */
abstract class Partitioner extends Serializable {
    //这个方法返回你要创建分区的个数;
  def numPartitions: Int 
    //这个方法对输入的key做计算,返回该key对应的分区ID,范围是0到numPartitions-1
  def getPartition(key: Any): Int 
}

 

spark默认的实现是hashPartitioner,看一下它的实现方法:

/**
 * A [[org.apache.spark.Partitioner]] that implements hash-based partitioning using
 * Java's `Object.hashCode`.
 *
 * Java arrays have hashCodes that are based on the arrays' identities rather than their contents,
 * so attempting to partition an RDD[Array[_]] or RDD[(Array[_], _)] using a HashPartitioner will
 * produce an unexpected or incorrect result.
 */
class HashPartitioner(partitions: Int) extends Partitioner {
  require(partitions >= 0, s"Number of partitions ($partitions) cannot be negative.")

  def numPartitions: Int = partitions

  def getPartition(key: Any): Int = key match {
    case null => 0
    case _ => Utils.nonNegativeMod(key.hashCode, numPartitions)
  }
    //这个是Java标准的判断相等的函数,这个函数是因为Spark内部会比较两个RDD的分区是否一样。
  override def equals(other: Any): Boolean = other match {
    case h: HashPartitioner =>
      h.numPartitions == numPartitions
    case _ =>
      false
  }

  override def hashCode: Int = numPartitions
}

nonNegativeMod方法:

 /* Calculates 'x' modulo 'mod', takes to consideration sign of x,
  * i.e. if 'x' is negative, than 'x' % 'mod' is negative too
  * so function return (x % mod) + mod in that case.
  */
  def nonNegativeMod(x: Int, mod: Int): Int = {
    val rawMod = x % mod
    rawMod + (if (rawMod < 0) mod else 0)
  }

 

举个例子

        //将jack、world相关的元素分到单独的分区中
        JavaRDD<String> javaRDD =jsc.parallelize(Arrays.asList("jack1", "jack2", "jack3"
                , "world1", "world2", "world3"));

 

自定义partitioner

import org.apache.spark.Partitioner;

/**
 * 自定义Partitioner
 */
public class MyPartitioner extends Partitioner {

    private int numPartitions;

    public MyPartitioner(int numPartitions){
        this.numPartitions = numPartitions;
    }
    @Override
    public int numPartitions() {
        return numPartitions;
    }

    @Override
    public int getPartition(Object key) {
        if(key == null){
            return 0;
        }
        String str = key.toString();
        int hashCode = str.substring(0, str.length() - 1).hashCode();
        return nonNegativeMod(hashCode,numPartitions);
    }

    public boolean equals(Object obj) {
        if (obj instanceof MyPartitioner) {
            return ((MyPartitioner) obj).numPartitions == numPartitions;
        }
        return false;
    }

    //Utils.nonNegativeMod(key.hashCode, numPartitions)
    private int nonNegativeMod(int hashCode,int numPartitions){
        int rawMod = hashCode % numPartitions;
        if(rawMod < 0){
            rawMod = rawMod + numPartitions;
        }
        return rawMod;
    }

}

 

然后我们在partitionBy()方法里面使用自定义的partitioner,测试示例:

        //将jack、world相关的元素分到单独的分区中
        JavaRDD<String> javaRDD =jsc.parallelize(Arrays.asList("jack1", "jack2", "jack3"
                , "world1", "world2", "world3"));
        //自定义partitioner需要在pairRDD的基础上调用
        JavaPairRDD<String, Integer> pairRDD = javaRDD.mapToPair(s -> new Tuple2<>(s, 1));
        JavaPairRDD<String, Integer> pairRDD1 = pairRDD.partitionBy(new MyPartitioner(2));
        System.out.println("指定分区之后的分区数:"+pairRDD1.getNumPartitions());

        pairRDD1.mapPartitionsWithIndex((v1, v2) -> {
            ArrayList<String> result = new ArrayList<>();
            while (v2.hasNext()){
                result.add(v1+"_"+v2.next());
            }
            return result.iterator();
        },true).foreach(s -> System.out.println(s));

输出

指定分区之后的分区数:2
0_(world1,1)
0_(world2,1)
0_(world3,1)
1_(jack1,1)
1_(jack2,1)
1_(jack3,1)

 


参考:https://my.oschina.net/u/939952/blog/1863372

参考:https://www.iteblog.com/archives/1368.html

posted @ 2020-03-10 14:08  sw_kong  阅读(2470)  评论(0编辑  收藏  举报