Flink on yarn以及实现jobManager 高可用(HA)

on yarn:https://ci.apache.org/projects/flink/flink-docs-release-1.8/ops/deployment/yarn_setup.html


 flink on yarn两种方式

第一种方式:yarn session 模式,在yarn上启动一个长期运行的flink集群

使用 yarn session 模式,我们需要先启动一个 yarn-session 会话,相当于启动了一个 yarn 任务,这个任务所占用的资源不会变化,并且一直运行。我们在使用 flink run 向这个 session 任务提交作业时,如果 session 的资源不足,那么任务会等待,直到其他资源释放。当这个 yarn-session 被杀死时,所有任务都会停止。

 

把yarn和hdfs相关配置文件拷贝到flink配置目录下,或者直接指定yarn和hdfs配置文件对应的路径

export HADOOP_CONF_DIR=/root/flink-1.8.2/conf
cd flink-1.8.2/ ./bin/yarn-session.sh -jm 1024m -tm 4096m -s 16

-jm:jobmanager的内存,-tm:每个taskmanager的内存,-s:the number of processing slots per Task Manager

日志如下

[root@master01 flink-1.8.2]# ./bin/yarn-session.sh -jm 1024m -tm 4096m -s 16
2019-12-10 10:05:40,010 INFO  org.apache.flink.configuration.GlobalConfiguration            - Loading configuration property: jobmanager.rpc.address, master01.hadoop.xxx.cn
2019-12-10 10:05:40,012 INFO  org.apache.flink.configuration.GlobalConfiguration            - Loading configuration property: jobmanager.rpc.port, 6123
2019-12-10 10:05:40,012 INFO  org.apache.flink.configuration.GlobalConfiguration            - Loading configuration property: jobmanager.heap.size, 1024m
2019-12-10 10:05:40,012 INFO  org.apache.flink.configuration.GlobalConfiguration            - Loading configuration property: taskmanager.heap.size, 1024m
2019-12-10 10:05:40,012 INFO  org.apache.flink.configuration.GlobalConfiguration            - Loading configuration property: taskmanager.numberOfTaskSlots, 1
2019-12-10 10:05:40,012 INFO  org.apache.flink.configuration.GlobalConfiguration            - Loading configuration property: parallelism.default, 1
2019-12-10 10:05:40,067 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                 - Found Yarn properties file under /tmp/.yarn-properties-root.
2019-12-10 10:05:40,399 INFO  org.apache.flink.runtime.security.modules.HadoopModule        - Hadoop user set to root (auth:SIMPLE)
2019-12-10 10:05:40,459 INFO  org.apache.hadoop.yarn.client.RMProxy                         - Connecting to ResourceManager at master01.hadoop.xxx.cn/xxx.xx.x.xxx:8032
2019-12-10 10:05:40,634 INFO  org.apache.flink.yarn.AbstractYarnClusterDescriptor           - Cluster specification: ClusterSpecification{masterMemoryMB=1024, taskManagerMemoryMB=4096, numberTaskManagers=1, slotsPerTaskManager=16}
2019-12-10 10:05:40,857 WARN  org.apache.hadoop.util.NativeCodeLoader                       - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2019-12-10 10:05:40,873 WARN  org.apache.flink.yarn.AbstractYarnClusterDescriptor           - The configuration directory ('/root/flink-1.8.2/conf') contains both LOG4J and Logback configuration files. Please delete or rename one of them.
2019-12-10 10:05:42,434 INFO  org.apache.flink.yarn.AbstractYarnClusterDescriptor           - Submitting application master application_1570496850779_0463
2019-12-10 10:05:42,457 INFO  org.apache.hadoop.yarn.client.api.impl.YarnClientImpl         - Submitted application application_1570496850779_0463
2019-12-10 10:05:42,457 INFO  org.apache.flink.yarn.AbstractYarnClusterDescriptor           - Waiting for the cluster to be allocated
2019-12-10 10:05:42,458 INFO  org.apache.flink.yarn.AbstractYarnClusterDescriptor           - Deploying cluster, current state ACCEPTED
2019-12-10 10:05:46,234 INFO  org.apache.flink.yarn.AbstractYarnClusterDescriptor           - YARN application has been deployed successfully.
2019-12-10 10:05:46,597 INFO  org.apache.flink.runtime.rest.RestClient                      - Rest client endpoint started.
Flink JobManager is now running on worker03.hadoop.xxx.cn:38055 with leader id 00000000-0000-0000-0000-000000000000.
JobManager Web Interface: http://worker03.hadoop.xxx.cn:38055

 

查看web界面可以直接到yarn界面查看,也可以通过日志中给出的jobmanager界面查看

 

 

提交任务测试,提交任务使用./bin/flink

cd flink-1.8.2/
./bin/flink run ./examples/batch/WordCount.jar

日志如下:

[root@master01 flink-1.8.2]# ./bin/flink run ./examples/batch/WordCount.jar
2019-12-10 11:01:43,553 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                 - Found Yarn properties file under /tmp/.yarn-properties-root.
2019-12-10 11:01:43,553 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                 - Found Yarn properties file under /tmp/.yarn-properties-root.
2019-12-10 11:01:43,785 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                 - YARN properties set default parallelism to 16
2019-12-10 11:01:43,785 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                 - YARN properties set default parallelism to 16
YARN properties set default parallelism to 16
2019-12-10 11:01:43,812 INFO  org.apache.hadoop.yarn.client.RMProxy                         - Connecting to ResourceManager at master01.hadoop.xxx.cn/xxx.xx.x.211:8032
2019-12-10 11:01:43,904 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                 - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
2019-12-10 11:01:43,904 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                 - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
2019-12-10 11:01:43,956 INFO  org.apache.flink.yarn.AbstractYarnClusterDescriptor           - Found application JobManager host name 'worker02.hadoop.xxx.cn' and port '39095' from supplied application id 'application_1570496850779_0467'
Starting execution of program
Executing WordCount example with default input data set.
Use --input to specify file input.
Printing result to stdout. Use --output to specify output path.
(a,5)
(action,1)
(after,1)
(against,1)
(all,2)
......

问题:在提交flink任务时候,flink是怎么找到对应的集群呢?

看日志高亮部分,查看/tmp/.yarn-properties-root文件内容

[root@master01 flink-1.8.2]# more /tmp/.yarn-properties-root
#Generated YARN properties file
#Tue Dec 10 10:40:29 CST 2019
parallelism=16
dynamicPropertiesString=
applicationID=application_1570496850779_0467

这个applicationID不就是我们提交到yarn上flink集群对应的id嘛。

 

到flink web ui查看任务记录

 

 此外,在启动on yarn flink集群时候可以使用-d or --detached实现类似后台运行的形式执行,此方式下,如果想停止集群,使用yarn application -kill <appId>

 

第二种方式:Run a single Flink job on YARN

 上面第一种方式是在yarn上启动一个flink集群,然后提交任务时候向这个集群提交。此外,也可以在yarn上直接执行一个flink任务,有点类似spark-submit的感觉。

[root@master01 flink-1.8.2]# ./bin/flink run -m yarn-cluster ./examples/batch/WordCount.jar

日志:

2019-12-10 11:44:56,912 INFO  org.apache.hadoop.yarn.client.RMProxy                         - Connecting to ResourceManager at master01.hadoop.xxx.cn/xxx.xx.x.xxx:8032
2019-12-10 11:44:57,004 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                 - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
2019-12-10 11:44:57,004 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                 - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
2019-12-10 11:44:57,101 INFO  org.apache.flink.yarn.AbstractYarnClusterDescriptor           - Cluster specification: ClusterSpecification{masterMemoryMB=1024, taskManagerMemoryMB=1024, numberTaskManagers=1, slotsPerTaskManager=1}
2019-12-10 11:44:57,379 WARN  org.apache.flink.yarn.AbstractYarnClusterDescriptor           - The configuration directory ('/root/flink-1.8.2/conf') contains both LOG4J and Logback configuration files. Please delete or rename one of them.
2019-12-10 11:45:01,058 INFO  org.apache.flink.yarn.AbstractYarnClusterDescriptor           - Submitting application master application_1570496850779_0470
2019-12-10 11:45:01,093 INFO  org.apache.hadoop.yarn.client.api.impl.YarnClientImpl         - Submitted application application_1570496850779_0470
2019-12-10 11:45:01,093 INFO  org.apache.flink.yarn.AbstractYarnClusterDescriptor           - Waiting for the cluster to be allocated
2019-12-10 11:45:01,094 INFO  org.apache.flink.yarn.AbstractYarnClusterDescriptor           - Deploying cluster, current state ACCEPTED
2019-12-10 11:45:05,621 INFO  org.apache.flink.yarn.AbstractYarnClusterDescriptor           - YARN application has been deployed successfully.
Starting execution of program
Executing WordCount example with default input data set.
Use --input to specify file input.
Printing result to stdout. Use --output to specify output path.
(a,5)
(action,1)
(after,1)
(against,1)
......

可以看到,第一件事是连接yarn的resourcemanager。

 ./bin/flink run 命令解析:

run [OPTIONS] <jar-file> <arguments>  
"run" 操作参数:  
-c,--class <classname>  如果没有在jar包中指定入口类,则需要在这里通过这个参数指定  
-m,--jobmanager <host:port>  指定需要连接的jobmanager(主节点)地址,使用这个参数可以指定一个不同于配置文件中的jobmanager  
-p,--parallelism <parallelism>   指定程序的并行度。可以覆盖配置文件中的默认值。
默认查找当前yarn集群中已有的yarn-session信息中的jobmanager【/tmp/.yarn-properties-root】:
./bin/flink run ./examples/batch/WordCount.jar -input hdfs://hostname:port/hello.txt -output hdfs://hostname:port/result1
连接指定host和port的jobmanager:
./bin/flink run -m hadoop100:1234 ./examples/batch/WordCount.jar -input hdfs://hostname:port/hello.txt -output hdfs://hostname:port/result1
启动一个新的yarn-session:
./bin/flink run -m yarn-cluster -yn 2 ./examples/batch/WordCount.jar -input hdfs://hostname:port/hello.txt -output hdfs://hostname:port/result1
注意:yarn session命令行的选项也可以使用./bin/flink 工具获得。它们都有一个y或者yarn的前缀
例如:./bin/flink run -m yarn-cluster -yn 2 ./examples/batch/WordCount.jar 

 

Flink on yarn的内部实现

 

既然是on yarn,那必然需要知道yarn以及hdfs的相关配置,获取相关配置流程如下:

1,先检查有没有设置 YARN_CONF_DIR, HADOOP_CONF_DIR or HADOOP_CONF_PATH环境变量,如果其中之一设置了的话,那就通过此方式读取环境信息。

2,如果第一部分没有设置任何内容,那么客户端会去找HADOOP_HOME环境变量,然后访问$HADOOP_HOME/etc/hadoop路径下的配置文件。

当flink在提交一个任务时,客户端首先会检查资源是否可用(内存和cpu),然后上传flink jar包到hdfs。

然后客户端申请container启动applicationMaster,被选中的nodeManager初始化container,比如下载相关文件,然后启动applicationMaster。

JobManager和AM在同一个container中运行。AM也就知道JobManager的地址。然后为taskManager生成一个新的Flink配置文件(以便它们可以连接到JobManager)。文件也被上传到HDFS。此外,AM container还提供Flink的web接口。(yarn分配的所有端口都是临时端口。并且允许用户并行执行多个Flink任务)

之后,AM开始为Flink的taskManager分配container,后者将从HDFS下载jar包和修改后的配置文件。即可接收job然后执行


 

HA

官网参考

因为单点故障的存在(single point of failure (SPOF))所以要做HA,实现HA又分flink standalone模式和on yarn模式

flink standalone模式下的HA

运行多个jobManager,其中一个为leader,其他为standby,通过zookeeper实现故障切换。如下图:

 

相关配置:

1.在conf/masters文件中添加多个jobManager主机和端口号,我这里环境如下

[root@master01 conf]# more masters 
master01.hadoop.xxx.cn:8081
worker03.hadoop.xxx.cn:8081

2.修改conf/flink-conf.yaml文件,主要是指定通过zookeeper来实现HA

(我这里已有运行正常的cdh集群)

high-availability: zookeeper
high-availability.storageDir: hdfs:///flink/ha/
high-availability.zookeeper.quorum: master01.hadoop.xxx.cn:2181,worker01.hadoop.xxx.cn:2181,worker03.hadoop.xxx.cn:2181

此外,zookeeper是在/flink目录下存储对应的元数据(类似hbase),并且zk存储的并不是真正做recovery的元数据,数据其实是存储在hdfs上的,zk存储的只是指向hdfs路径的一个标识。

3.发flink包到各个节点

4.执行bin/start-cluster.sh

 

看wei界面

 

 

可以看到已经启用HA以及使用的zk集群,目前leader为master01节点。zk目录结构存储如下:

[zk: localhost:2181(CONNECTED) 0] ls /
[flink, hive_zookeeper_namespace_hive, zookeeper, solr]
[zk: localhost:2181(CONNECTED) 1] ls /flink
[default]
[zk: localhost:2181(CONNECTED) 2] ls /flink/default
[jobgraphs, leader, leaderlatch]

 

kill掉master01节点的jobManager进程看能否实现切换,进程如下:

83819 StandaloneSessionClusterEntrypoint

再访问web界面,如下:

 

 Flink on yarn HA实现

官网介绍:https://ci.apache.org/projects/flink/flink-docs-release-1.10/ops/jobmanager_high_availability.html#yarn-cluster-high-availability

 

与 Standalone 集群不同的是,Flink on Yarn 的高可用配置只需要一个 JobManager。当 JobManager 发生失败时,Yarn 负责将其重新启动。

我们需要修改 yarn-site.yaml 文件中的配置,如下所示:

<property>
  <name>yarn.resourcemanager.am.max-attempts</name>
  <value>4</value>
  <description>
    The maximum number of application master execution attempts.
  </description>
</property>

yarn.resourcemanager.am.max-attempts 表示 Yarn 的 application master 的最大重试次数。

除了上述 HA 配置之外,还需要配置 flink-conf.yaml 中的最大重试次数(默认为2):

yarn.application-attempts: 10

当 yarn.application-attempts 配置为 10 的时候:

这意味着如果程序启动失败,YARN 会再重试 9 次(9 次重试 + 1 次启动),如果 YARN 启动 10 次作业还失败,则 YARN 才会将该任务的状态置为失败。如果发生进程抢占,节点硬件故障或重启,NodeManager 重新同步等,YARN 会继续尝试启动应用。 这些重启不计入 yarn.application-attempts 个数中。

 

同时官网给出了重要提示,不同 Yarn 版本的容器关闭行为不同:

  • YARN 2.3.0 < YARN 版本 < 2.4.0。如果 application master 进程失败,则所有的 container 都会重启。

  • YARN 2.4.0 < YARN 版本 < 2.6.0。TaskManager container 在 application master 故障期间,会继续工作。这样的优点是:启动时间更快,且缩短了所有 task manager 启动时申请资源的时间。

  • YARN 2.6.0 <= YARN 版本:失败重试的间隔会被设置为 Akka 的超时时间。在一次时间间隔内达到最大失败重试次数才会被置为失败。

另外,需要注意的是,假如你的 ZooKeeper 集群使用 Kerberos 安全模式运行,那么可以根据需要添加下面的配置:

zookeeper.sasl.service-name
zookeeper.sasl.login-context-name

 

posted @ 2019-12-10 17:53  sw_kong  阅读(5208)  评论(0编辑  收藏  举报