开放的数据集整理

推荐系统常用的:

1)MovieLens

MovieLens数据集中,用户对自己看过的电影进行评分,分值为1~5。MovieLens包括两个不同大小的库,适用于不同规模的算法.小规模的库是943个独立用户对1682部电影作的10000次评分的数据;大规模的库是6040个独立用户对3900部电影作的大约100万次评分。

2)EachMovie

HP/Compaq的DEC研究中心曾经在网上架设EachMovie电影推荐系统对公众开放.之后,这个推荐系统关闭了一段时间,其数据作为研究用途对外公布,MovieLens的部分数据就是来自于这个数据集的.这个数据集有72916个用户对l628部电影进行的2811983次评分。早期大量的协同过滤的研究工作都 是基于这个数据集的。2004年HP重新开放EachMovie,这个数据集就不提供公开下载了。

3)BookCrossing

这个数据集是网上的Book-Crossing图书社区的278858个用户对271379本书进行的评分,包括显式和隐式的评分。这些用户的年龄等人口统计学属性(demographic feature)都以匿名的形式保存并供分析。这个数据集是由Cai-Nicolas Ziegler使用爬虫程序在2004年从Book-Crossing图书社区上采集的。

4)Jester Joke

Jester Joke是一个网上推荐和分享笑话的网站。这个数据集有73496个用户对100个笑话作的410万次评分。评分范围是-10~10的连续实数。这些数据是由加州大学伯克利分校的Ken Goldberg公布的。

5)Netflix

这个数据集来自于电影租赁网址Netflix的数据库。Netflix于2005年底公布此数据集并设立百万美元的奖金(netflix prize),征集能够使其推荐系统性能上升10%的推荐算法和架构。这个数据集包含了480189个匿名用户对大约17770部电影作的大约lO亿次评分。

6)Usenet Newsgroups

这个数据集包括20个新闻组的用户浏览数据。最新的应用是在KDD2007上的论文。新闻组的内容和讨论的话题包括计算机技术、摩托车、篮球、政治等。用户们对这些话题进行评价和反馈。

7)UCI知识库

UCI知识库是Blake等人在1998年开放的一个用于机器学习和评测的数据库,其中存储大量用于模型训练的标注样本。

其他:

8)http://snap.stanford.edu/na09/resources.html

9)http://archive.ics.uci.edu/ml/

10)http://www.ituring.com.cn/article/details/1188

posted on 2012-08-27 10:05  Razzit  阅读(4594)  评论(0编辑  收藏  举报

导航