酉卒之子

导航

Mongo按指定字段 分段分组 聚合统计

现在有一批数据如下(表名detectOriginalData):

{
    "_id" : "760c29a2720ead1681184dfbef0aaae4",
    "imgSavePath" : "/opt/temp/face/publicceaf441cf933bba310e4.JPG",
    "faceDetail" : {
        "face_token" : "760c29a2720ead1681184dfbef0aaae4",
        "location" : {
            "left" : 110.04,
            "top" : 244.39,
            "width" : 311.0,
            "height" : 263.0,
            "rotation" : -2
        }
    },
    "cdt" : ISODate("2020-12-25T10:53:43.647+08:00")
}

现在,我们要统计faceDetail.location.width,找出width处于300-400之间,每隔10分一段(也就是300-310、310-320...390-400共10组),之间的faceToken和imgSavePath都有哪些

最后实现的一种为:

db.detectOriginalData.aggregate([
        {$match: {"faceDetail.location.width": {$lte: 400, $gte: 300}}},
        {$project: {val: "$faceDetail.location.width", ftk: "$faceDetail.face_token", imgPath: "$imgSavePath"}},
        {$group: {
            "_id": {
                $subtract: [
                {$subtract: ["$val", 0]},
                {$mod: [{$subtract: ["$val", 0]}, 10]}
                ]
            },
            ftkList: {$push: "$ftk"},
            imgList: {$push: "$imgPath"},
            ftkCount: {$sum: 1}
        }},
        {$sort: {_id: -1}}
])

 

下面为开始用的绕了弯路的一种实现方式,可以忽略。。。

db.detectOriginalData.aggregate([
        {$match: {"faceDetail.location.width": {$lte: 400, $gte: 300}}},
        {$project: {val: "$faceDetail.location.width", ftk: "$faceDetail.face_token"}},
        {$lookup:{
            from:"detectOriginalData",
            localField:"ftk",
            foreignField: "_id",
            as: "img"}
        },
        {$project: {val: 1, ftk: 1, imgPath: "$img.imgSavePath"}},
        {$unwind: "$imgPath"},
        {$group: {
            "_id": {
                $subtract: [
                {$subtract: ["$val", 0]},
                {$mod: [{$subtract: ["$val", 0]}, 10]}
                ]
            },
            ftkList: {$push: "$ftk"},
            imgList: {$push: "$imgPath"},
            ftkCount: {$sum: 1}
        }},
        {$sort: {_id: -1}}
])

最后的结果如下(_id=320,代表width处于320-330之间的数据):

 

************2021-01-19 新增,测试小伙伴提了个统计需求。。。。。。

先看统计数据关联的另一张表(过滤详情表detectFilterDetail),大概数据结构如下(只截取部分字段):

{
    "_id" : ObjectId("5feaa27fd873663e8085507d"),
    "faceToken" : "2268048d7df15fa15652cc745261404e",
    "paramRecordId" : "5feaa273d873663e80855047",
    "paramBoolean" : {
        "ageMax" : true,
        "ageMin" : true,
        "qualityBlur" : true,
        "qualityOcclusionMouth" : true,
        "locationWidthMin" : false,
        "locationHeightMin" : false
    },
    "filterCount" : 2,
    "filterKey" : [ 
        "locationWidthMin", 
        "locationHeightMin"
    ],
    "cdt" : ISODate("2020-12-29T11:29:03.651+08:00")
}

现在是想要统计,detectFilterDetail表的detectFilterDetail.paramBoolean.qualityOcclusionMouse为true的分布,也就是和上一个统计一样,统计每个分段里面,为true的数量有多少

琢磨了一会,大概实现sql如下:

db.detectFilterDetail.aggregate([
        {$match: {"paramRecordId": "5feaa273d873663e80855047", "paramBoolean.qualityOcclusionMouth": true}},
        {$project: {flag: "$paramBoolean.qualityOcclusionMouth", ftk: "$faceToken"}},
        {$lookup:{
            from:"detectOriginalData",
            localField:"ftk",
            foreignField: "_id",
            as: "f_ftk"}
        },
        {$project: {flag: 1, ftk: 1, val: "$f_ftk.faceDetail.quality.occlusion.mouth"}},
        {$unwind: "$val"},
        {$group: {
            "_id": {
                $subtract: [
                {$subtract: ["$val", 0]},
                {$mod: [{$subtract: ["$val", 0]}, 0.1]}
                ]
            },
            ftkList: {$push: "$ftk"},
            ftkCount: {$sum: 1}
        }},
        //{$group: {"_id": null, count: {$sum: 1}}}
        {$sort: {_id: -1}}
])

结果如下:

 

 ************2021-05-17 新增,有个其他场景统计需求,用这份数据测试一下。。。。。。

(过滤详情表detectFilterDetail)统计需求就是:根据 过滤参数个数filterCount字段 分组,既要 统计总数,又要统计其中某个具体参数占的数量(就是paramBoolean里面某个具体参数占的数量,这里选paramBoolean.qualityBlur来测试

实现sql如下:

db.detectFilterDetail.aggregate([
    {$match: {"cdt": {$lte: new Date("2021-05-11T18:35:04.071+08:00")}}},
    {$group: {
        _id: "$filterCount", 
        summmm: {$sum: 1}, 
        countBlur: {$sum: {
            $cond: { if: { $eq: [ "$paramBoolean.qualityBlur", false ] }, then: 1, else: 0 }
        }}
    }}
]);

结果如下:

 

 其中,$cond还有一种更简单的写法:

$cond: [{$eq: ["$paramBoolean.qualityOcclusionNose", false]}, 1, 0 ]

 PS:暂时做个记录,后续再稍微解释各个语句的大概作用

 

************2023-10-09 新增,现场有个小伙伴提了个需求,对某记录按天分组统计。。。。。。

其中,表的数据结构大概长这样:

{
    "_id" : ObjectId("62ad1581af8d0507d0cd621b"),
    "imsi" : "460076410375112",
    "imei" : "",
    "regional" : "中国",
    "isp" : 3,
    "netType" : "CMCC2",
    "createTime" : NumberLong(1655510401),
    "uptime" : NumberLong(1655510391),
    "deviceId" : "ZDKGEC005",
    "lon" : 105.13,
    "lat" : 28.19,
    "distance" : 530,
    "rsrp" : [ 
        -103
    ]
}

其中,需要分组统计的就是uptime字段,是Int64类型的,单位是秒

最后实现的SQL如下:

db.imsiRecord.aggregate([
    {$match: {
        "uptime": {
            $gte: ISODate("2022-06-17 00:00:00") / 1000,
            $lte: ISODate("2022-06-18 00:00:00") / 1000
        },
        "deviceId" : /ZDK/,
    }},
    {$project: {
        "imsi": 1,
        "uptime": 1,
        "day": {
            $dateToString:{
            format:"%Y-%m-%d",
            date:{$add:[new Date(0), {$multiply: ["$uptime", 1000]}, 28800000]},
        }},
     }},
     {$group: {
         _id: "$day",
         count: {$sum: 1},
     }},
    {$sort: {_id:1}},
]);

注意,需要特殊处理的是uptime这个字段,因为单位是秒,需要处理成毫秒,所以额外乘以1000,输出结果大致如下:

 数据量大的话,这将是一个比较耗时的操作,慎用!!!

posted on 2021-01-08 11:02  酉卒之子  阅读(1557)  评论(0编辑  收藏  举报