05 (OC) 二叉树 深度优先遍历和广度优先遍历
总结深度优先与广度优先的区别
1、区别
1) 二叉树的深度优先遍历的非递归的通用做法是采用栈,广度优先遍历的非递归的通用做法是采用队列。
2) 深度优先遍历:对每一个可能的分支路径深入到不能再深入为止,而且每个结点只能访问一次。要特别注意的是,二叉树的深度优先遍历比较特殊,可以细分为先序遍历、中序遍历、后序遍历。具体说明如下:
- 先序遍历:对任一子树,先访问根,然后遍历其左子树,最后遍历其右子树。
- 中序遍历:对任一子树,先遍历其左子树,然后访问根,最后遍历其右子树。
- 后序遍历:对任一子树,先遍历其左子树,然后遍历其右子树,最后访问根。
广度优先遍历:又叫层次遍历,从上往下对每一层依次访问,在每一层中,从左往右(也可以从右往左)访问结点,访问完一层就进入下一层,直到没有结点可以访问为止。
3)深度优先搜素算法:不全部保留结点,占用空间少;有回溯操作(即有入栈、出栈操作),运行速度慢。
广度优先搜索算法:保留全部结点,占用空间大; 无回溯操作(即无入栈、出栈操作),运行速度快。
通常 深度优先搜索法不全部保留结点,扩展完的结点从数据库中弹出删去,这样,一般在数据库中存储的结点数就是深度值,因此它占用空间较少。
所以,当搜索树的结点较多,用其它方法易产生内存溢出时,深度优先搜索不失为一种有效的求解方法。
广度优先搜索算法,一般需存储产生的所有结点,占用的存储空间要比深度优先搜索大得多,因此,程序设计中,必须考虑溢出和节省内存空间的问题。
但广度优先搜索法一般无回溯操作,即入栈和出栈的操作,所以运行速度比深度优先搜索要快些
4)深度优先遍历:用时间换空间。
广度优先遍历:用空间换时间。
2.二叉树的遍历
先序遍历(递归):35 20 15 16 29 28 30 40 50 45 55
中序遍历(递归):15 16 20 28 29 30 35 40 45 50 55
后序遍历(递归):16 15 28 30 29 20 45 55 50 40 35
先序遍历(非递归):35 20 15 16 29 28 30 40 50 45 55
中序遍历(非递归):15 16 20 28 29 30 35 40 45 50 55
后序遍历(非递归):16 15 28 30 29 20 45 55 50 40 35
广度优先遍历:35 20 40 15 29 50 16 28 30 45 55