02:hash算法和对称加密

复习

1:常见的hash算法

2:hash算法特点:算法公开、不可逆、相同数据md5相同、信息摘要

3:hash算法用途:密码加密,数字签名。

4:密码加密:md5、md5加盐、Hmac(2次散列)、登录权限。

5:数字签名,数字签名验证。

6:常见的对称加密

7:加密模式ecb、cbc

8:vi命令

 

目录

一:hash(算列)算法

1:常见的hash算法

2:hash算法特点

3:hash算法用途

4:密码加密流程、token

5:数字签名

二:对称加密

1:常见的对称加密

2:加密模式ecb、cbc

3:vi命令

 

正文

一:hash算法

1:hash 哈希(散列)函数,不是加密算法,经常和加密一起使用。

Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入通过散列算法变换成固定长度的输出,该输出就是散列值。

MD5

SHA1/256/512

HMAC(加密的方案)

2:算法特点

1:算法公开

2:对相同的数据运算,结果一样。默认128位二进制进制的数据。32位的16进制。

3:不可逆运算。

4:信息摘要,用来做数据识别。

3:用途

1:用户密码的加密(不用rsa加密,数据库应该存储密码,用户隐私信息(包括密码)是hash算法)

2:版权

3:数字签名

4:搜索引擎

备注:hash算法一般是对字符串来操作的。

cmd5可以解开md5的值。

4:用户密码加密:

1:直接对密码进行md5不安全,可以反查询。

2:MD5 加盐。静态字符串。

拼接一个复杂的字符串。

缺点:盐是固定的,写死在程序中,一旦泄露就不安全了。

3:Hmac:加密方案。

使用一个秘钥(key)加密,并且做两次散列。在实际开发中,这个秘钥来自服务器。动态盐。

3.1:一个账号对应一个key,而且可以更新这个key。

3.2:什么时候客户端拿到key

首次登陆的时候拿到key。注册的时候拿到key。

换设备的时候,没有key,需要验证的时候。

3.3:对key进行扩展,设备锁::让原始设备允许的时候,才可以申请key。

Key是一个权限。有了key才可以登录。

3.4:目的:保护了用户的密码。

4:登录权限

添加服务器的时间戳(到分钟级别的时间戳)

(Hmac哈希值+202005211556).MD5用于登录。

5:数字签名

对原始数据的hash值用rsa加密。

用hash来验证数据的完整性,用来判断数据是否篡改。

发给服务器的数据是:

原始数据+原始数据的hash值的rsa加密值。

数组签名

 

 数字签名验证

 

二:对称加密

1:常见加密算法

1.1:DES

1.2:3DES:3对秘钥,对同一个数据进行3次加密。

1.3:AES(高级密码标准)

2:对称机密-加密模式

Ecb:电子密码本模式

Cbc:密码分组链接模式,后一个密码块加密依赖前一个密码块的加密。

ECB(Electronic Code Book):电子密码本模式。每一块数据,独立加密。

最基本的加密模式,也就是通常理解的加密,相同的明文将永远加密成相同的密文,无初始向量,容易受到密码本重放攻击,一般情况下很少用。

CBC(Cipher Block Chaining):密码分组链接模式。使用一个密钥和一个初始化向量[IV]对数据执行加密。

明文被加密前要与前面的密文进行异或运算后再加密,因此只要选择不同的初始向量,相同的密文加密后会形成不同的密文,这是目前应用最广泛的模式。CBC加密后的密文是上下文相关的,但明文的错误不会传递到后续分组,但如果一个分组丢失,后面的分组将全部作废(同步错误)。

CBC可以有效的保证密文的完整性,如果一个数据块在传递是丢失或改变,后面的数据将无法正常解密。

3:终端命令

1: 创建message.txt文件

1.1:vi message.txt

1.2: 输入i进入编辑模式

1.3:输入文本内容

1.4:esc退出编辑模式

1.5:    :wq  退出编辑模式,并且保存

 

2:加密message.txt

2.1: ecb模式

openssl enc -des-ecb -K 616263 -nosalt -in message.txt  -out msg.bin

 

2.2:  cbc模式  xxd 查看二进制数据

openssl enc -des-cbc -iv 0102030405060708 -K 616263 -nosalt -in message.txt -out msg1.bin

 

三: 代码

1:hash算法

代码

#import <Foundation/Foundation.h>

@interface NSString (Hash)
    
#pragma mark - 散列函数
    /**
     *  计算MD5散列结果
     *
     *  终端测试命令:
     *  @code
     *  md5 -s "string"
     *  @endcode
     *
     *  <p>提示:随着 MD5 碰撞生成器的出现,MD5 算法不应被用于任何软件完整性检查或代码签名的用途。<p>
     *
     *  @return 32个字符的MD5散列字符串
     */
- (NSString *)md5String;
    
    /**
     *  计算SHA1散列结果
     *
     *  终端测试命令:
     *  @code
     *  echo -n "string" | openssl sha -sha1
     *  @endcode
     *
     *  @return 40个字符的SHA1散列字符串
     */
- (NSString *)sha1String;
    
    /**
     *  计算SHA256散列结果
     *
     *  终端测试命令:
     *  @code
     *  echo -n "string" | openssl sha -sha256
     *  @endcode
     *
     *  @return 64个字符的SHA256散列字符串
     */
- (NSString *)sha256String;
    
    /**
     *  计算SHA 512散列结果
     *
     *  终端测试命令:
     *  @code
     *  echo -n "string" | openssl sha -sha512
     *  @endcode
     *
     *  @return 128个字符的SHA 512散列字符串
     */
- (NSString *)sha512String;
    
#pragma mark - HMAC 散列函数
    /**
     *  计算HMAC MD5散列结果
     *
     *  终端测试命令:
     *  @code
     *  echo -n "string" | openssl dgst -md5 -hmac "key"
     *  @endcode
     *
     *  @return 32个字符的HMAC MD5散列字符串
     */
- (NSString *)hmacMD5StringWithKey:(NSString *)key;
    
    /**
     *  计算HMAC SHA1散列结果
     *
     *  终端测试命令:
     *  @code
     *  echo -n "string" | openssl sha -sha1 -hmac "key"
     *  @endcode
     *
     *  @return 40个字符的HMAC SHA1散列字符串
     */
- (NSString *)hmacSHA1StringWithKey:(NSString *)key;
    
    /**
     *  计算HMAC SHA256散列结果
     *
     *  终端测试命令:
     *  @code
     *  echo -n "string" | openssl sha -sha256 -hmac "key"
     *  @endcode
     *
     *  @return 64个字符的HMAC SHA256散列字符串
     */
- (NSString *)hmacSHA256StringWithKey:(NSString *)key;
    
    /**
     *  计算HMAC SHA512散列结果
     *
     *  终端测试命令:
     *  @code
     *  echo -n "string" | openssl sha -sha512 -hmac "key"
     *  @endcode
     *
     *  @return 128个字符的HMAC SHA512散列字符串
     */
- (NSString *)hmacSHA512StringWithKey:(NSString *)key;
    
#pragma mark - 文件散列函数
    
    /**
     *  计算文件的MD5散列结果
     *
     *  终端测试命令:
     *  @code
     *  md5 file.dat
     *  @endcode
     *
     *  @return 32个字符的MD5散列字符串
     */
- (NSString *)fileMD5Hash;
    
    /**
     *  计算文件的SHA1散列结果
     *
     *  终端测试命令:
     *  @code
     *  openssl sha -sha1 file.dat
     *  @endcode
     *
     *  @return 40个字符的SHA1散列字符串
     */
- (NSString *)fileSHA1Hash;
    
    /**
     *  计算文件的SHA256散列结果
     *
     *  终端测试命令:
     *  @code
     *  openssl sha -sha256 file.dat
     *  @endcode
     *
     *  @return 64个字符的SHA256散列字符串
     */
- (NSString *)fileSHA256Hash;
    
    /**
     *  计算文件的SHA512散列结果
     *
     *  终端测试命令:
     *  @code
     *  openssl sha -sha512 file.dat
     *  @endcode
     *
     *  @return 128个字符的SHA512散列字符串
     */
- (NSString *)fileSHA512Hash;
    
    @end
View Code
#import "NSString+Hash.h"
#import <CommonCrypto/CommonCrypto.h>

@implementation NSString (Hash)
    
#pragma mark - 散列函数
- (NSString *)md5String {
    const char *str = self.UTF8String;
    uint8_t buffer[CC_MD5_DIGEST_LENGTH];
    
    CC_MD5(str, (CC_LONG)strlen(str), buffer);
    
    return [self stringFromBytes:buffer length:CC_MD5_DIGEST_LENGTH];
}
    
- (NSString *)sha1String {
    const char *str = self.UTF8String;
    uint8_t buffer[CC_SHA1_DIGEST_LENGTH];
    
    CC_SHA1(str, (CC_LONG)strlen(str), buffer);
    
    return [self stringFromBytes:buffer length:CC_SHA1_DIGEST_LENGTH];
}
    
- (NSString *)sha256String {
    const char *str = self.UTF8String;
    uint8_t buffer[CC_SHA256_DIGEST_LENGTH];
    
    CC_SHA256(str, (CC_LONG)strlen(str), buffer);
    
    return [self stringFromBytes:buffer length:CC_SHA256_DIGEST_LENGTH];
}
    
- (NSString *)sha512String {
    const char *str = self.UTF8String;
    uint8_t buffer[CC_SHA512_DIGEST_LENGTH];
    
    CC_SHA512(str, (CC_LONG)strlen(str), buffer);
    
    return [self stringFromBytes:buffer length:CC_SHA512_DIGEST_LENGTH];
}
    
#pragma mark - HMAC 散列函数
- (NSString *)hmacMD5StringWithKey:(NSString *)key {
    const char *keyData = key.UTF8String;
    const char *strData = self.UTF8String;
    uint8_t buffer[CC_MD5_DIGEST_LENGTH];
    
    CCHmac(kCCHmacAlgMD5, keyData, strlen(keyData), strData, strlen(strData), buffer);
    
    return [self stringFromBytes:buffer length:CC_MD5_DIGEST_LENGTH];
}
    
- (NSString *)hmacSHA1StringWithKey:(NSString *)key {
    const char *keyData = key.UTF8String;
    const char *strData = self.UTF8String;
    uint8_t buffer[CC_SHA1_DIGEST_LENGTH];
    
    CCHmac(kCCHmacAlgSHA1, keyData, strlen(keyData), strData, strlen(strData), buffer);
    
    return [self stringFromBytes:buffer length:CC_SHA1_DIGEST_LENGTH];
}
    
- (NSString *)hmacSHA256StringWithKey:(NSString *)key {
    const char *keyData = key.UTF8String;
    const char *strData = self.UTF8String;
    uint8_t buffer[CC_SHA256_DIGEST_LENGTH];
    
    CCHmac(kCCHmacAlgSHA256, keyData, strlen(keyData), strData, strlen(strData), buffer);
    
    return [self stringFromBytes:buffer length:CC_SHA256_DIGEST_LENGTH];
}
    
- (NSString *)hmacSHA512StringWithKey:(NSString *)key {
    const char *keyData = key.UTF8String;
    const char *strData = self.UTF8String;
    uint8_t buffer[CC_SHA512_DIGEST_LENGTH];
    
    CCHmac(kCCHmacAlgSHA512, keyData, strlen(keyData), strData, strlen(strData), buffer);
    
    return [self stringFromBytes:buffer length:CC_SHA512_DIGEST_LENGTH];
}
    
#pragma mark - 文件散列函数
    
#define FileHashDefaultChunkSizeForReadingData 4096
    
- (NSString *)fileMD5Hash {
    NSFileHandle *fp = [NSFileHandle fileHandleForReadingAtPath:self];
    if (fp == nil) {
        return nil;
    }
    
    CC_MD5_CTX hashCtx;
    CC_MD5_Init(&hashCtx);
    
    while (YES) {
        @autoreleasepool {
            NSData *data = [fp readDataOfLength:FileHashDefaultChunkSizeForReadingData];
            
            CC_MD5_Update(&hashCtx, data.bytes, (CC_LONG)data.length);
            
            if (data.length == 0) {
                break;
            }
        }
    }
    [fp closeFile];
    
    uint8_t buffer[CC_MD5_DIGEST_LENGTH];
    CC_MD5_Final(buffer, &hashCtx);
    
    return [self stringFromBytes:buffer length:CC_MD5_DIGEST_LENGTH];
}
    
- (NSString *)fileSHA1Hash {
    NSFileHandle *fp = [NSFileHandle fileHandleForReadingAtPath:self];
    if (fp == nil) {
        return nil;
    }
    
    CC_SHA1_CTX hashCtx;
    CC_SHA1_Init(&hashCtx);
    
    while (YES) {
        @autoreleasepool {
            NSData *data = [fp readDataOfLength:FileHashDefaultChunkSizeForReadingData];
            
            CC_SHA1_Update(&hashCtx, data.bytes, (CC_LONG)data.length);
            
            if (data.length == 0) {
                break;
            }
        }
    }
    [fp closeFile];
    
    uint8_t buffer[CC_SHA1_DIGEST_LENGTH];
    CC_SHA1_Final(buffer, &hashCtx);
    
    return [self stringFromBytes:buffer length:CC_SHA1_DIGEST_LENGTH];
}
    
- (NSString *)fileSHA256Hash {
    NSFileHandle *fp = [NSFileHandle fileHandleForReadingAtPath:self];
    if (fp == nil) {
        return nil;
    }
    
    CC_SHA256_CTX hashCtx;
    CC_SHA256_Init(&hashCtx);
    
    while (YES) {
        @autoreleasepool {
            NSData *data = [fp readDataOfLength:FileHashDefaultChunkSizeForReadingData];
            
            CC_SHA256_Update(&hashCtx, data.bytes, (CC_LONG)data.length);
            
            if (data.length == 0) {
                break;
            }
        }
    }
    [fp closeFile];
    
    uint8_t buffer[CC_SHA256_DIGEST_LENGTH];
    CC_SHA256_Final(buffer, &hashCtx);
    
    return [self stringFromBytes:buffer length:CC_SHA256_DIGEST_LENGTH];
}
    
- (NSString *)fileSHA512Hash {
    NSFileHandle *fp = [NSFileHandle fileHandleForReadingAtPath:self];
    if (fp == nil) {
        return nil;
    }
    
    CC_SHA512_CTX hashCtx;
    CC_SHA512_Init(&hashCtx);
    
    while (YES) {
        @autoreleasepool {
            NSData *data = [fp readDataOfLength:FileHashDefaultChunkSizeForReadingData];
            
            CC_SHA512_Update(&hashCtx, data.bytes, (CC_LONG)data.length);
            
            if (data.length == 0) {
                break;
            }
        }
    }
    [fp closeFile];
    
    uint8_t buffer[CC_SHA512_DIGEST_LENGTH];
    CC_SHA512_Final(buffer, &hashCtx);
    
    return [self stringFromBytes:buffer length:CC_SHA512_DIGEST_LENGTH];
}
    
#pragma mark - 助手方法
    /**
     *  返回二进制 Bytes 流的字符串表示形式
     *
     *  @param bytes  二进制 Bytes 数组
     *  @param length 数组长度
     *
     *  @return 字符串表示形式
     */
- (NSString *)stringFromBytes:(uint8_t *)bytes length:(int)length {
    NSMutableString *strM = [NSMutableString string];
    
    for (int i = 0; i < length; i++) {
        [strM appendFormat:@"%02x", bytes[i]];
    }
    
    return [strM copy];
}
    
    @end
View Code

使用

#import "ViewController.h"
#import "NSString+Hash.h"

@interface ViewController ()

@end

@implementation ViewController

- (void)viewDidLoad {
    [super viewDidLoad];
}


//足够复杂!
static NSString * salt = @"(*(*(DS*YFHIUYF(*&DSFHUS(*AD&";

-(void)touchesBegan:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event
{
    //密码
    NSString * pwd = @"123456";
    
    //MD5 直接加密 e10adc3949ba59abbe56e057f20f883e
    //不足:不够安全了。可以反查询!
//    pwd = pwd.md5String;
    
    
    //MD5 加盐
    //弊端: 盐是固定的,写死在程序里面,一旦泄露就不安全了!
//    pwd = [pwd stringByAppendingString:salt].md5String;
    
    
    /** HMAC
     *  使用一个密钥加密,并且做两次散列!
     *  在实际开发中,密钥(KEY)来自于服务器(动态的)!
     *  一个账号,对应一个KEY,而且还可以跟新!
     */
    pwd = [pwd hmacMD5StringWithKey:@"hank"];
    NSLog(@"%@",pwd);
    
}


@end
View Code

 

2:对称加密 

2.1:对称加密终端命令

加密

echo -n hello | openssl enc -aes-128-ecb -K 616263 -nosalt | base64

解密

echo -n d1QG4T2tivoi0Kiu3NEmZQ== | base64 -D | openssl enc -aes-128-ecb -K 616263 -nosalt -d  

2.2:CCCrypt 函数,des、aes 加密,2中加密模式,秘钥,11个参数

 

代码

#import <Foundation/Foundation.h>
#import <CommonCrypto/CommonCrypto.h>

/**
 *  终端测试指令
 *
 *  DES(ECB)加密
 *  $ echo -n hello | openssl enc -des-ecb -K 616263 -nosalt | base64
 *
 * DES(CBC)加密
 *  $ echo -n hello | openssl enc -des-cbc -iv 0102030405060708 -K 616263 -nosalt | base64
 *
 *  AES(ECB)加密
 *  $ echo -n hello | openssl enc -aes-128-ecb -K 616263 -nosalt | base64
 *
 *  AES(CBC)加密
 *  $ echo -n hello | openssl enc -aes-128-cbc -iv 0102030405060708 -K 616263 -nosalt | base64
 *
 *  DES(ECB)解密
 *  $ echo -n HQr0Oij2kbo= | base64 -D | openssl enc -des-ecb -K 616263 -nosalt -d
 *
 *  DES(CBC)解密
 *  $ echo -n alvrvb3Gz88= | base64 -D | openssl enc -des-cbc -iv 0102030405060708 -K 616263 -nosalt -d
 *
 *  AES(ECB)解密
 *  $ echo -n d1QG4T2tivoi0Kiu3NEmZQ== | base64 -D | openssl enc -aes-128-ecb -K 616263 -nosalt -d
 *
 *  AES(CBC)解密
 *  $ echo -n u3W/N816uzFpcg6pZ+kbdg== | base64 -D | openssl enc -aes-128-cbc -iv 0102030405060708 -K 616263 -nosalt -d
 *
 *  提示:
 *      1> 加密过程是先加密,再base64编码
 *      2> 解密过程是先base64解码,再解密
 */
@interface EncryptionTools : NSObject
    
+ (instancetype)sharedEncryptionTools;
    
    /**
     @constant   kCCAlgorithmAES     高级加密标准,128位(默认)
     @constant   kCCAlgorithmDES     数据加密标准
     */
    @property (nonatomic, assign) uint32_t algorithm;
    
    /**
     *  加密字符串并返回base64编码字符串
     *
     *  @param string    要加密的字符串
     *  @param keyString 加密密钥
     *  @param iv        初始化向量(8个字节)
     *
     *  @return 返回加密后的base64编码字符串
     */
- (NSString *)encryptString:(NSString *)string keyString:(NSString *)keyString iv:(NSData *)iv;
    
    /**
     *  解密字符串
     *
     *  @param string    加密并base64编码后的字符串
     *  @param keyString 解密密钥
     *  @param iv        初始化向量(8个字节)
     *
     *  @return 返回解密后的字符串
     */
- (NSString *)decryptString:(NSString *)string keyString:(NSString *)keyString iv:(NSData *)iv;
    
    @end
View Code
#import "EncryptionTools.h"

@interface EncryptionTools()
    @property (nonatomic, assign) int keySize;
    @property (nonatomic, assign) int blockSize;
    @end

@implementation EncryptionTools
    
+ (instancetype)sharedEncryptionTools {
    static EncryptionTools *instance;
    
    static dispatch_once_t onceToken;
    dispatch_once(&onceToken, ^{
        instance = [[self alloc] init];
        instance.algorithm = kCCAlgorithmAES;
    });
    
    return instance;
}
    
- (void)setAlgorithm:(uint32_t)algorithm {
    _algorithm = algorithm;
    switch (algorithm) {
        case kCCAlgorithmAES:
        self.keySize = kCCKeySizeAES128;
        self.blockSize = kCCBlockSizeAES128;
        break;
        case kCCAlgorithmDES:
        self.keySize = kCCKeySizeDES;
        self.blockSize = kCCBlockSizeDES;
        break;
        default:
        break;
    }
}
    
- (NSString *)encryptString:(NSString *)string keyString:(NSString *)keyString iv:(NSData *)iv {
    
    // 设置秘钥
    NSData *keyData = [keyString dataUsingEncoding:NSUTF8StringEncoding];
    uint8_t cKey[self.keySize];
    bzero(cKey, sizeof(cKey));
    [keyData getBytes:cKey length:self.keySize];
    
    // 设置iv
    uint8_t cIv[self.blockSize];
    bzero(cIv, self.blockSize);
    int option = 0;
    if (iv) {
        [iv getBytes:cIv length:self.blockSize];
        option = kCCOptionPKCS7Padding;
    } else {
        option = kCCOptionPKCS7Padding | kCCOptionECBMode;
    }
    
    // 设置输出缓冲区
    NSData *data = [string dataUsingEncoding:NSUTF8StringEncoding];
    size_t bufferSize = [data length] + self.blockSize;
    void *buffer = malloc(bufferSize);
    
    // 开始加密
    size_t encryptedSize = 0;
    //加密解密都是它 -- CCCrypt
    CCCryptorStatus cryptStatus = CCCrypt(kCCEncrypt,
                                          self.algorithm,
                                          option,
                                          cKey,
                                          self.keySize,
                                          cIv,
                                          [data bytes],
                                          [data length],
                                          buffer,
                                          bufferSize,
                                          &encryptedSize);
    
    NSData *result = nil;
    if (cryptStatus == kCCSuccess) {
        result = [NSData dataWithBytesNoCopy:buffer length:encryptedSize];
    } else {
        free(buffer);
        NSLog(@"[错误] 加密失败|状态编码: %d", cryptStatus);
    }
    
    return [result base64EncodedStringWithOptions:0];
}
    
- (NSString *)decryptString:(NSString *)string keyString:(NSString *)keyString iv:(NSData *)iv {
    
    // 设置秘钥
    NSData *keyData = [keyString dataUsingEncoding:NSUTF8StringEncoding];
    uint8_t cKey[self.keySize];
    bzero(cKey, sizeof(cKey));
    [keyData getBytes:cKey length:self.keySize];
    
    // 设置iv
    uint8_t cIv[self.blockSize];
    bzero(cIv, self.blockSize);
    int option = 0;
    if (iv) {
        [iv getBytes:cIv length:self.blockSize];
        option = kCCOptionPKCS7Padding;//CBC 加密!
    } else {
        option = kCCOptionPKCS7Padding | kCCOptionECBMode;//ECB加密!
    }
    
    // 设置输出缓冲区
    NSData *data = [[NSData alloc] initWithBase64EncodedString:string options:0];
    size_t bufferSize = [data length] + self.blockSize;
    void *buffer = malloc(bufferSize);
    
    // 开始解密
    size_t decryptedSize = 0;
    /**CCCrypt 对称加密算法的核心函数(加密/解密)
     参数:
     1、kCCEncrypt 加密/kCCDecrypt 解密
     2、加密算法、默认的 AES/DES
     3、加密方式的选项
        kCCOptionPKCS7Padding | kCCOptionECBMode;//ECB加密!
        kCCOptionPKCS7Padding;//CBC 加密!
     4、加密密钥
     5、密钥长度
     6、iv 初始化向量,ECB 不需要指定
     7、加密的数据
     8、加密的数据长度
     9、缓冲区(地址),存放密文的
     10、缓冲区的大小
     11、加密结果大小
     */
    CCCryptorStatus cryptStatus = CCCrypt(kCCDecrypt,
                                          self.algorithm,
                                          option,
                                          cKey,
                                          self.keySize,
                                          cIv,
                                          [data bytes],
                                          [data length],
                                          buffer,
                                          bufferSize,
                                          &decryptedSize);
    
    NSData *result = nil;
    if (cryptStatus == kCCSuccess) {
        result = [NSData dataWithBytesNoCopy:buffer length:decryptedSize];
    } else {
        free(buffer);
        NSLog(@"[错误] 解密失败|状态编码: %d", cryptStatus);
    }
    
    return [[NSString alloc] initWithData:result encoding:NSUTF8StringEncoding];
}
    
    @end
View Code

使用

#import "ViewController.h"
#import "EncryptionTools.h"


@interface ViewController ()

@end

@implementation ViewController

- (void)viewDidLoad {
    [super viewDidLoad];
    /** AES - ECB */
    NSString * key = @"abc";
    NSString * encStr = [[EncryptionTools sharedEncryptionTools] encryptString:@"hello" keyString:key iv:nil];
    
    NSLog(@"加密的结果是:%@",encStr);
    
    NSLog(@"解密的结果是:%@",[[EncryptionTools sharedEncryptionTools] decryptString:encStr keyString:key iv:nil]);
    
    /** AES - CBC 加密 */
    uint8_t iv[8] = {1,2,3,4,5,6,7,8};
    NSData * ivData = [NSData dataWithBytes:iv length:sizeof(iv)];
    
    
    
    NSLog(@"CBC加密:%@",[[EncryptionTools sharedEncryptionTools] encryptString:@"hello" keyString:@"abc" iv:ivData]);
    
    NSLog(@"解密:%@",[[EncryptionTools sharedEncryptionTools] decryptString:@"u3W/N816uzFpcg6pZ+kbdg==" keyString:key iv:ivData]);
}


@end
View Code

 

注意

1:hash算法特点用途(密码加密【hmac双层加密-token】和数字签名)

2:对称加密算法和对称加密模式ecb、cbc

 

引用

1:登录注册Hmac

2:token 令牌

3:常见三种加密(MD5、非对称加密,对称加密)

posted on 2020-05-21 14:46  风zk  阅读(1040)  评论(0编辑  收藏  举报

导航