Educational Codeforces Round 138 (Rated for Div. 2)
比赛链接
Educational Codeforces Round 138 (Rated for Div. 2)
D. Counting Arrays
解题思路
容斥原理
显然 \([1,1,\dots,1]\) 是一组方案,直接求不好求解,考虑反面,对于 \([2,3,\dots,n]\) 的数 \(x\),如果 \(gcd(x,i)=1\) 则显然构造一组解,则要求 \(x\) 与 \(i\) 前面所有的素数都不互质,求出前面所有素数乘积 \(mul\),这样的数共有 \(m/mul\) 个
中间有部分过程爆long long
有点难受
- 时间复杂度:\(O(nlogn)\)
代码
// Problem: D. Counting Arrays
// Contest: Codeforces - Educational Codeforces Round 138 (Rated for Div. 2)
// URL: https://codeforces.com/contest/1749/problem/D
// Memory Limit: 512 MB
// Time Limit: 2000 ms
//
// Powered by CP Editor (https://cpeditor.org)
// %%%Skyqwq
#include <bits/stdc++.h>
#define int long long
#define help {cin.tie(NULL); cout.tie(NULL);}
#define pb push_back
#define fi first
#define se second
#define mkp make_pair
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
typedef pair<LL, LL> PLL;
template <typename T> bool chkMax(T &x, T y) { return (y > x) ? x = y, 1 : 0; }
template <typename T> bool chkMin(T &x, T y) { return (y < x) ? x = y, 1 : 0; }
template <typename T> void inline read(T &x) {
int f = 1; x = 0; char s = getchar();
while (s < '0' || s > '9') { if (s == '-') f = -1; s = getchar(); }
while (s <= '9' && s >= '0') x = x * 10 + (s ^ 48), s = getchar();
x *= f;
}
const int mod=998244353;
int ksm(int a,int b,int p)
{
int res=1%p;
while(b)
{
if(b&1)res=(__int128)res*a%p;
a=(__int128)a*a%p;
b>>=1;
}
return res;
}
bool is(int x)
{
for(int i=2;i<=x/i;i++)
if(x%i==0)return false;
return true;
}
signed main()
{
int n,m,res=0,a=1,t=1,ot=0;
cin>>n>>m;
for(int i=1;i<=n;i++)res=(res+ksm(m,i,mod))%mod;
for(int i=1;i<=n;i++)
{
if(is(i))
{
if((__int128)a*i<=m)a*=i;
else
break;
}
t=(__int128)t*(m/a)%mod;
ot=(ot+t)%mod;
}
res-=ot;
cout<<(res%mod+mod)%mod;
return 0;
}