[Swust OJ 794]--最近对问题(分治)
题目链接:http://acm.swust.edu.cn/problem/794/
Time limit(ms): 1000 Memory limit(kb): 10000
Description
设p1=(x1, y1), p2=(x2, y2), …, pn=(xn, yn)是平面上n个点构成的集合S,设计算法找出集合S中距离最近的点对。
Input
多组测试数据,第一行为测试数据组数n(0<n≤100),每组测试数据由两个部分构成,第一部分为一个点的个数m(0<m≤1000),紧接着是m行,每行为一个点的坐标x和y,用空格隔开,(0<x,y≤100000)
Output
每组测试数据输出一行,为该组数据最近点的距离,保留4为小数。
Sample Input
2
2
0 0
0 1
3
0 0
1 1
1 0
|
Sample Output
1.0000
1.0000
|
Hint
algorithm textbook
不想多说,前几天写了一篇博客,主要讲的就是平面最近点对的问题,可以戳戳这里:http://www.cnblogs.com/zyxStar/p/4591897.html
直接上代码:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <algorithm> 6 using namespace std; 7 const double inf = 1e20; 8 const int maxn = 100005; 9 10 struct Point{ 11 double x, y; 12 }point[maxn]; 13 14 int n, mpt[maxn], t; 15 16 //以x为基准排序 17 bool cmpxy(const Point& a, const Point& b){ 18 if (a.x != b.x) 19 return a.x < b.x; 20 return a.y < b.y; 21 } 22 23 bool cmpy(const int& a, const int& b){ 24 return point[a].y < point[b].y; 25 } 26 27 double min(double a, double b){ 28 return a < b ? a : b; 29 } 30 31 double dis(int i, int j){ 32 return sqrt((point[i].x - point[j].x)*(point[i].x - point[j].x) + (point[i].y - point[j].y)*(point[i].y - point[j].y)); 33 } 34 35 double Closest_Pair(int left, int right){ 36 double d = inf; 37 if (left == right) 38 return d; 39 if (left + 1 == right) 40 return dis(left, right); 41 int mid = (left + right) >> 1; 42 double d1 = Closest_Pair(left, mid); 43 double d2 = Closest_Pair(mid + 1, right); 44 d = min(d1, d2); 45 int i, j, k = 0; 46 //分离出宽度为d的区间 47 for (i = left; i <= right; i++){ 48 if (fabs(point[mid].x - point[i].x) <= d) 49 mpt[k++] = i; 50 } 51 sort(mpt, mpt + k, cmpy); 52 //线性扫描 53 for (i = 0; i < k; i++){ 54 for (j = i + 1; j < k && point[mpt[j]].y - point[mpt[i]].y<d; j++){ 55 double d3 = dis(mpt[i], mpt[j]); 56 if (d > d3) d = d3; 57 } 58 } 59 return d; 60 } 61 62 int main(){ 63 scanf("%d", &t); 64 while (t--){ 65 scanf("%d", &n); 66 for (int i = 0; i < n; i++) 67 scanf("%lf %lf", &point[i].x, &point[i].y); 68 sort(point, point + n, cmpxy); 69 printf("%.4lf\n", Closest_Pair(0, n - 1)); 70 } 71 return 0; 72 }
如果这是你所爱的,就不要让自己后悔~~~