双向反射分布函数

双向反射是指地物的反射率随入射方向和反射方向而变化的特性。实际地物的反射都是具有方向性的,是入射方向和观测方向的函数。

双向反射分布函数的定义是:

 

双向反射特性的主要应用是目标对直射太阳光的不同方向的反射,特别是前向热点和后向热点,即在反射方向和入射方向反方向信号有明显增强。

地表反照率Albedo是对某表面而言的总的反射辐射通量与入射辐射通量之比。在一般应用中是指一个宽带,如太阳光谱段 (0.3~4.伽m)。对多波段遥感的某个谱段而言,称为谱反照率 (spectralAlhedo)。这都是指向整个半球的反射。对某波段向一定方向的反射,则称为反射率(Refleetance)。地表反照率 (Surfac。Albedo)是反映地表对太阳短波辐射反射特性的物理参量;

 

物体表面对电磁波的反射有三种形式:

镜面反射(mirror reflection)

反射能量集中在一个方向,反射角=入射角

漫反射(diffuse reflection)

整个表面都均匀地向各向反射入射光称为漫反射

方向反射(directional reflection)

介于漫反射和镜面反射之间,各向都有反射,

但各向反射强度不均一。

实际上多数自然表面对辐射的波长而言都是粗糙表面。当目标物的表面足够粗糙,以致于它对太阳短波辐射的反射辐射亮度在以目标物的中心的2π空间中呈常数,即反射辐射亮度不随观测角度而变,我们称该物体为漫反射体,亦称朗伯体。漫反射又称朗伯(Lambert)反射,也称各向同性反射。

介于漫反射和镜面反射之间反射称为方向反射,也称非朗伯反射。产生方向反射的物体在自然界中占绝大多数,即它们对太阳短波辐射的散射具有各向异性性质。当遥感应用进入定量分析阶段,我们必须抛弃“目标是朗伯体”的假设。

目前大部分应用还都采用朗伯近似。

描述方向反射不能简单用反射率表述,因为各方向的反射率都不一样。

对非朗伯体而言,它对太阳短波辐射的反射、散射能力不仅随波长而变,同时亦随空间方向而变。

所谓地物的波谱特征是指该地物对太阳辐射的反射、散射能力随波长而变的规律。地物波谱特征与地物的组成成份,物体内部的结构关系密切,通俗讲地物波谱特征也就是地物的颜色特征。

而地物的方向特征是用来描述地物对太阳辐射反射、散射能力在方向空间变化的,这种空间变化特征主要决定于两种因素,其一是物体的表面粗糙度,它不仅取决于表面平均粗糙高度值与电磁波波长之间的比例关系,而且还与视角关系密切。

设波长为λ,空间具有δ分布函数的入射辐射,从 (θ0,φ0) 方向,以辐射亮度L0 (θ0,φ0,λ)投射向点目标,造成该点目标的辐照度增量为dE (θ0,φ0,λ) = L0 (θ0,φ0,λ) cosθ0 dΩ。传感器从方向(θ,φ)观察目标物,接收到来自目标物对外来辐射dE的反射辐射,其亮度值为dL (θ,φ,λ)。

则定义双向反射率分布函数:

双向反射率分布函数(BRDF)的物理意义是:来自方向地表辐照度的微增量与其所引起的方向上反射辐射亮度增量之间的比值。

这样定义的BRDF为什么可以恰当地表达地物的非朗伯体特性呢?

众所周知,在现实世界中投射到地物表面上的辐射能量往往有两部份组成,即来自太阳的直射辐射与天空散射辐射,而传感器在方向上测得的辐射亮度是空间入射辐射场的综合效应,它不仅与该点地物的反射特性有关,而且与辐射环境(即入射辐射亮度的空间分布函数)有关。

为了摆脱辐射环境的影响,我们采取两个措施:其一,设定入射辐射场为δ分布函数,其二,采用比值形式。

这样定义的 f 有如下三个特点:

与辐射环境无关,它仅与该地物的反射辐射特性有关,并且具有的 (Sr)-1 因次。 它是θ0,φ0, θ,φ,λ 五个自变量的函数,在2π空间中无论是入射还是反射均有无穷多个方向。(从概念上说要完整地表达一个物体的非朗伯体特性需要有无穷多个测量数据,而且这组无穷多个测量数据仅与一个具体对象相联系,例如对某一棵树的BRDF测量结果一般不同于对另一棵树的测量结果。实际上它使得对物体的非朗伯体的描述几乎成为不可能。所以重要的问题是能否对一类地物建立一种模型,从无穷多个测量数据集中找到一组个数有限的子集,它足以表征这类地物共同的对入射辐射的反射、散射特性,并且它与这类地物的空间结构特征有着稳定的函数关系,我们把这样的特殊子集称之为这类地物的方向谱。) 这样定义的BRDF,虽然从理论上能较好地表征地物的非朗伯体特性,但在实际测量上困难较大,精确测量dE (θ0,φ0,λ)很困难。

 

双向反射率因子(Bi-directional Reflectance Factor, BRF)

定义:在相同的辐照度条件下,地物向(θ,φ)方向的反射辐射亮度与一个理想的漫反射体在该方向上的反射辐射亮度之比值,称为双向反射率因子R:

 

反射率reflectivity   

投射到物体上面被反射的辐射能与投射到物体上的总辐射能之比,称为该物体的反射率。这是针对所有波长而言,应称为全反射率,通常简称为反射率。   

物体表面所能反射的光量和它所接受的光量之比。常用百分率和小数表示。

行星的反射率是描述行星表面物理性质的一个重要物理量.太阳系九大行星中以金星的反射率为最大:76%,水星的最小:10%.地球的反射率各研究者所得的数值各不相同.大体在35%-43%之间.

海水对于短波辐射的反射率(反照率)一般仅为5%,也就是说,海水可以吸收太阳热辐射能量的95%,而白色冰雪的反射率却高达30~80%,二者相差6~16倍。

不透明介质如镜面的反射率为100%,非镜面则与颜色、温度、光的属性等诸方面因素有关。

透明介质的反射率的大小与光的入射角有关,入射角越大,反射率越大,例如,光从光密介质进入光疏介质时,当入射角达到临界角时,发生全反现象,小于临界角时,则是部分反射。   

一个普适的反射率计算公式是:ρ=(n1平方-n2)平方/(n1平方+n2)平方,其中n1,n2分别是两种介质的真实折射率(即相对于真空的折射率)。

折射率是指光线进入不同介质时角度发生改变的现象,用sinθ1/sinθ2来表征。θ1,θ2分别为入射角和折射角,即光线与法线的夹角。   

通常来说,光线在临界面上的反射率仅与介质的物理性能,光线的波长,以及入射角相关。在介质折射率连续变化的情况下(例如光线连续穿过两种不同折射率的玻璃时),由于在不同界面的反射光线产生干涉效应,其反射率还与介质厚度有关。从而我们可以通过设计特定厚度和特定折射率的涂层,来得到想要的较大或是较小反射率的复合材料。   

反射率最大值的厚度(2z+1)*λ/4=d*√(n平方-sin平方α)   

反射率最小值的厚度 z*λ/2=d*√(n平方-sin平方α)   

其中z是序列数,λ是波长,d是厚度,n是折射率,α是入射角

反照率,albedo,行星或卫星反射光能力的标示值,定义为所反射的光和入射光的比值。反照率的值介于 0 (完美的黑体) 到 1 (完全反射)之间。月球的反照率为 0.12,而金星为 0.6。   

反照率是指地表在太阳辐射的影响下,反射辐射通量与入射辐射通量的比值。它与反射率的概念是有区别的,反射率(reflectance)是指某一波段向一定方向的反射,因而反照率是反射率在所有方向上的积分。它是反演很多地表参数的重要变量,反映了地表对太阳辐射的吸收能力。

地面反射率  

到达地面的总辐射中,有一部分被地面反射回大气,称为地面反射辐射。地面反射能力的大小,以向上的反射辐射总通量与入射辐射总通量的比值来表示,称为地面反射率。

地面反射率的大小取决于地面的性质和状态。一般来说,深色土壤的反射率比浅色土壤小,潮湿土壤的反射率比干燥土壤小,粗糙表面的反射率比平滑表面小,陆地表面的平均反射率为10—35%,新雪面反射率最大,可达95%。水面反射率随太阳高度角而变,太阳高度角愈小反射率愈大。对波浪起伏的水面来讲,反射率平均为7—10%左右。因此,即使总辐射强度一样,不同性质的下垫面得到的太阳辐射仍然有很大差别,这是地面温度分布不均匀的原因之一。   

地面反射率还与下垫面有关,不同的下垫面会有不同的地面反射率,一般来说如果下垫面为雪地的话,那么发射率较高,如果为草地的话,发射率较低。 地表反射率是指地表物体向各个方向上反射的太阳总辐射通量与到达该物体表面上的总辐射通量之比。

地表反照率(α)地表反照率是指地表对入射的太阳辐射的反射通量与入射的太阳辐射通量的比值,决定了多少辐射能被下垫面所吸收,因而是地表能量平衡研究中的一个重要参数

反照率通常是指物体反射太阳辐射与该物体表面接收太阳总辐射的两者比率或分数度量,也就是指反射辐射与入射总辐射的比值。

反照率与反射系数及辐射波长都有密切关系,而通常也与可见太阳光谱作比较。例如新生雪面之平均反射率约占可见光谱各波长总辐射量之0.85,但同一地点的地面辐射反射率可能迹近于零。

 

 

假彩色合成又称彩色合成。根据加色法或减色法,将多波段单色影像合成为假彩色影像的一种彩色增强技术。合成彩色影像常与天然色彩不同,且可任意变换,故称假彩色影像。合成方法很多,主要有光学法、电子光学法、染印法等。最常用的是利用根据加色法原理制成的彩色合成仪(加色观察器)来合成假彩色影像:将3张不同波段的黑白透明正片(如对应于绿、红和近红外波段)分别匹配以蓝、绿、红滤色镜,经投影合成于屏幕上,则显示出具有彩色红外影像效果的假彩色影像。若多光谱片、滤色镜光谱响应完全一致,投影光源光谱成份与遥感成像时的太阳(经大气传输)光谱成份一致,则合成影像是真彩色影像。但这种条件难以满足,且彩色合成的目的在于彩色增强而不是彩色复原。故可通过变换多波段单色影像数目,如2~4个或同滤色镜的不同组合来改变假彩色影像色彩,以达到不同应用目的。陆地卫星多光谱扫描影像彩色合成,常采用MSS4+MSS5+MSS7与蓝+绿+红的常规组合。其合成效果色彩鲜艳,层次分明,轮廓突出,适于综合性判读分析。染印、印刷法由黄、品红、青3种不同波段透明影像严格配准叠加而成的假彩色合成影像,则是根据减色法原理成像的,仅用于制作“硬拷贝”(屏幕显示称“软拷贝”)。

假彩色         

彩色合成是用同一地区或景物的不同波段的黑白(分光)图像,分别通过不同的滤光系统,使其相应影像准确地重合,生成该地区或景物的彩色图像的技术过程。彩色合成首先必须得到同一地区或景物的分光(或不同波段的)负片,然后根据合成所采用的技术方法,选用分光正片或负片,再经分别滤光或加色,并准确重合后得到彩色图像。若取得分光负片和彩色合成所采用的滤光系统不一致又不一一对应,得到图像的彩色与实际彩色则不一致,称为假彩色或伪彩色。 真彩就是从各个角度看都能看到颜色,假彩就是有的角度考不清楚 伪彩色增强是将一个波段或单一的黑白图像变换为彩色图像,从而把人眼不能区分的微小的灰度差别显示为明显的色彩差异,更便于解译和提取有用信息。

伪彩色增强的方法主要有以下三种:

密度分割法

  密度分割或密度分层是伪彩色增强中最简单的一种方法,它是对图像亮度范围进行分割,使一定亮度间隔对应于某一类地物或几类地物从而有利于图像的增强和分类。它是把黑白图像的灰度级从0(黑)到M0(白)分成N个区间Li,i=1,2,…,N。给每个区间Li指定一种彩色Ci,这样,便可以把一幅灰度图像变成一幅伪彩色图像。此法比较直观简单,缺点使变换出的彩色数目有限。

空间域灰度级-彩色变换

  空间域灰度级-彩色变换是一种更为常用的、比密度分割更有效的伪彩色增强法。它是根据色度学的原理,将原图像的灰度分段经过红、绿、蓝三种不同变换,变成三基色分量,然后用它们分别去控制彩色显示器的红、绿、蓝电子枪,便可以在彩色显示器的屏幕上合成一幅彩色图像。彩色的含量由变换函数的形状而定。

频率域伪彩色增强

  频率域伪彩色增强时先把黑白图像经傅立叶变换到频率域,在频率域内三个不同传递特性的滤波器分离成三个独立分量,然后对它们进行逆傅立叶变换,便得到三幅代表不同频率分量的单色图像,接着对这三幅图像作进一步的处理(直方图均衡化),最后将它们作为三基色分量分别加到彩色显示器的红、绿、蓝显示通道,从而实现频率域分段的伪彩色增强。 参考资料:http://course.cug.edu.cn/rs/COURSE/6-4-2-a.HTM

假彩色:有三种形式1,把真实景物图像的象元逐个地映射为另一种颜色。 2,把多光谱图像中任三个光谱图像映射为可见光rgb,在合成为一幅彩色图像 3,把黑白图像,用灰度级映射或频谱映射而成为类似真实彩色的处理

伪彩色,相当于假彩色中的一个特例,即指定某灰度为某种彩色。相当于第3中形式。 真彩色(true-color)是指图像中的每个像素值都分成R、G、B三个基色分量,每个基色分量直接决定其基色的强度,这样产生的色彩称为真彩色。例如图像深度为24,用R:G:B=8:8:8来表示色彩,则R、G、B各占用8位来表示各自基色分量的强度,每个基色分量的强度等级为28=256种。图像可容纳224=16 M种色彩。这样得到的色彩可以反映原图的真实色彩,故称真彩色。

伪彩色(pseudo-color)图像的每个像素值实际上是一个索引值或代码,该代码值作为色彩查找表CLUT(Color Look-Up Table)中某一项的入口地址,根据该地址可查找出包含实际R、G、B的强度值。这种用查找映射的方法产生的色彩称为伪彩色。用这种方式产生的色彩本身是真的,不过它不一定反映原图的色彩。在VGA显示系统中,调色板就相当于色彩查找表。从16色标准VGA调色板的定义可以看出这种伪彩色的工作方式。

伪彩色一般用于65K色以下的显示方式中。标准的调色板是在256K色谱中按色调均匀地选取16种或256种色彩。一般应用中,有的图像往往偏向于某一种或几种色调,此时如果采用标准调色板,则色彩失真较多。因此,同一幅图像,采用不同的调色板显示可能会出现不同的色彩效果。

posted @ 2011-12-22 22:19  zyx2007  阅读(2299)  评论(0编辑  收藏  举报