POJ 2406 Power Strings (KMP)

Power Strings

Time Limit: 3000MS
Memory Limit: 65536K

Total Submissions: 29663
Accepted: 12387

Description

Given two strings a and b we define a*b to be their concatenation. For example, if a = "abc" and b = "def" then a*b = "abcdef". If we think of concatenation as multiplication, exponentiation by a non-negative integer is defined in the normal way: a^0 = "" (the empty string) and a^(n+1) = a*(a^n).

Input

Each test case is a line of input representing s, a string of printable characters. The length of s will be at least 1 and will not exceed 1 million characters. A line containing a period follows the last test case.

Output

For each s you should print the largest n such that s = a^n for some string a.

Sample Input

abcd
aaaa
ababab
.

Sample Output

1
4
3
 
::初学KMP真心不容易,理解起来很吃力,还好今天老师有讲解KMP的基本原理,现在思路清晰了一点,赶紧做这道以前暴力过的题。
证明:(PKU 2406 POWER STRINGS --- 字符串匹配,KMP算法

定理:假设S的长度为len,则S存在循环子串,当且仅当,len可以被len - next[len]整除,最短循环子串为S[len - next[len]]
例子证明:

设S=q1q2q3q4q5q6q7q8,并设next[8] = 6,此时str = S[len - next[len]] = q1q2,由字符串特征向量next的定义可知,q1q2q3q4q5q6 = q3q4q5q6q7q8,即有q1q2=q3q4,q3q4=q5q6,q5q6=q7q8,即q1q2为循环子串,且易知为最短循环子串。由以上过程可知,若len可以被len - next[len]整除,则S存在循环子串,否则不存在。
解法:利用KMP算法,求字符串的特征向量next,若len可以被len - next[len]整除,则最大循环次数n为len/(len - next[len]),否则为1。

 

   1: #include <cstdio>
   2: #include <cstring>
   3: #include <algorithm>
   4: using namespace std;
   5: const int maxn=1e6;
   6: char s[maxn+10];
   7: int next[maxn+10];
   8:  
   9: void get_next(char s[],int len)
  10: {
  11:     int i=0,j=-1;
  12:     next[0]=-1;
  13:     while(i<len)
  14:     {
  15:         if(j==-1||s[i]==s[j]) {j++; i++; next[i]=j;}
  16:         else j=next[j];
  17:     }
  18: }
  19:  
  20: int main()
  21: {
  22:     while(scanf("%s",s),s[0]!='.')
  23:     {
  24:         int len=strlen(s);
  25:         get_next(s,len);
  26:         if(len%(len-next[len])==0)
  27:             printf("%d\n",len/(len-next[len]));
  28:         else
  29:             printf("1\n");
  30:     }
  31:     return 0;
  32: }
posted @ 2014-03-21 13:24  ForeverEnjoy  阅读(2745)  评论(2编辑  收藏  举报