LOJ Finding LCM(math)
1215 - Finding LCM
Time Limit: 2 second(s)
Memory Limit: 32 MB
LCM is an abbreviation used for Least Common Multiple in Mathematics. We say LCM (a, b, c) = L if and only if L is the least integer which is divisible by a, b and c.
You will be given a, b and L. You have to find c such that LCM (a, b, c) = L. If there are several solutions, print the one where c is as small as possible. If there is no solution, report so.
Input
Input starts with an integer T (≤ 325), denoting the number of test cases.
Each case starts with a line containing three integers a b L (1 ≤ a, b ≤ 106, 1 ≤ L ≤ 1012).
Output
For each case, print the case number and the minimum possible value of c. If no solution is found, print 'impossible'.
Sample Input
3
3 5 30
209475 6992 77086800
2 6 10
Output for Sample Input
Case 1: 2
Case 2: 1
Case 3: impossible
题意:lcm(a,b,c)=L;现已知a,b,L的值,求是否存在c满足lcm(a,b,c)=L。
::首先求出a,b的最小公倍数m,则c必包含因子t=L/m;
令g=gcd(c,m);
假设c=t,c*m/g=L,当且仅当gcd(c,m)=1等式成立;
如果gcd(c,m)>1;
那么令(c*g)*(m/g)/gcd(c*g,m/g)=L;当且仅当gcd(c*g,m/g)=1;
如果gcd(c*g,m/g)>1重复上述操作;
例:a=2,b=3,L=12;
则m=6,L=12,t=2;
令c=t;判断gcd(6,2)==2,令c=c*2(==4),m=m/2(==3)
gcd(c,m)==1,故c=4;
代码:
1: #include <iostream>
2: #include <algorithm>
3: #include <cstring>
4: using namespace std;
5: typedef long long ll;
6:
7: ll gcd(ll a,ll b){
8: if(a<b) swap(a,b);
9: return b==0?a:gcd(b,a%b);
10: }
11:
12: ll lcm(ll a,ll b){
13: return a/gcd(a,b)*b;
14: }
15:
16: int run()
17: {
18: ll a,b,cas=1,L,T;
19: cin>>T;
20: while(T--)
21: {
22: cin>>a>>b>>L;
23: ll m=lcm(a,b);
24: if(m>L||L%m!=0)
25: {
26: cout<<"Case "<<cas++<<": "<<"impossible"<<endl;
27: continue;
28: }
29: ll c=L/m,g;
30: if(c!=1)
31: while((g=gcd(m,c))!=1){
32: c*=g,m/=g;
33: }
34: cout<<"Case "<<cas++<<": "<<c<<endl;
35: }
36: return 0;
37: }
38:
39: int main()
40: {
41: ios::sync_with_stdio(0);
42: return run();
43: }