【洛谷2257/BZOJ2820】YY的GCD(数论/莫比乌斯函数)
题目:
预备知识:莫比乌斯定理(懵逼乌斯定理)
\(\mu*1=\epsilon\)(证bu明hui略zheng)
其中(我校学长把\(\epsilon(x)\)叫单位函数但是为什么我没百度到qwq)
那个\(*\)是迪利克雷卷积,换成人话就是
我觉得用这种方式理解莫比乌斯定理比设两个函数容易
分析:
这题莫比乌斯定理的经典用例。
本文中默认\(N>M\)
默认\(p\)是质数
显然如果\(gcd(i,j)=p\),那么\(gcd(\frac{i}{p}, \frac{j}{p})=1\)
那么题目所求可以转换成下面的式子
其中(我校学长把这个叫单位函数但是我没百度到qwq)
根据莫比乌斯反演定理,上面的式子就可以变成
改变一下枚举顺序,用\(d·i\)表示原来的\(i\),\(d·j\)表示原来的\(j\),得到
可以发现\(\mu(d)\)和\(i\)、\(j\)没半毛钱关系,仅仅是乘上\(i\)和\(j\)可以取的值的数量
也就是
令\(T=pd\),枚举T,上式可变成
设$$g(x)=\sum_{p|x}\mu(\frac{x}{p})$$
则上式就是
现在考虑如何求\(g(x)\)这个函数。
首先,对于任意质数\(p\),显然\(g(p)=\mu(1)=1\)
然后,对于任意合数\(n=kp_0\)(\(p_0\)是质数)\(g(n)\)中显然存在\(\mu(\frac{n}{p_0})\)也就是\(\mu(k)\)这一项
当\({p_0}|k\),也就是\(p_0^2|n\),对于任意\(p|k\)且\(p\neq p_0\),\(\mu(\frac{n}{p})\)中一定有\(p_0^2\)这个质数平方因子。根据\(\mu(x)\)的定义,\(\mu(\frac{n}{p})=0\)
所以此时\(g(n)=\mu(k)\)
当\(p_0\)不能整除\(k\),对于任意\(p|k\),\(\mu(\frac{n}{p})\)比\(\mu(\frac{k}{p})\)多了\(p_0\)这个质因子。根据\(\mu(x)\)的定义\(\mu(\frac{n}{p})=-\mu(\frac{k}{p})\)
所以此时\(g(n)=-g(k)+\mu(k)\)
总结一下
显然这个函数可以用线性筛求
再来看这个式子,既然\(g(T)\)可以直接预处理并\(O(1)\)查询,那么计算这个式子的时间复杂度就是枚举\(T\)的复杂度\(O(N)\)
我会做啦!
别急,这题还有\(T\)组询问,所以复杂度是O(不可过)\(O(NT)\),这个过不了。
但是我们可以发现\(\lfloor\frac{N}{T}\rfloor*\lfloor\frac{M}{T}\rfloor\)在\(T\)的一段区间内是不变的,所以可以给\(g(T)\)算个前缀和然后分段计算,据说复杂度是\(O(\sqrt N T)\)的(我不会证),这样就可以过了
代码:
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
namespace zyt
{
typedef long long ll;
const int N = 1e7 + 10, M = 7e5;
bool mark[N];
int cnt, prime[M], phi[N], mu[N];
ll g[N];
void init()
{
mu[1] = 1;
for (int i = 2; i < N; i++)
{
if (!mark[i])
prime[cnt++] = i, mu[i] = -1, g[i] = 1;
for (int j = 0; j < cnt && (ll)i * prime[j] < N; j++)
{
int k = i * prime[j];
mark[k] = true;
if (i % prime[j] == 0)
{
mu[k] = 0;
g[k] = mu[i];
break;
}
else
{
mu[k] = -mu[i];
g[k] = -g[i] + mu[i];
}
}
}
for (int i = 2; i < N; i++)
g[i] += g[i - 1];
}
void work()
{
int T;
init();
scanf("%d", &T);
while (T--)
{
int n, m, pos = cnt;
ll ans = 0;
scanf("%d%d", &n, &m);
if (n > m)
swap(n, m);
for (int t = 1; t <= n;)
{
int tmp = min(n / (n / t), m / (m / t));
ans += (g[tmp] - g[t - 1]) * (n / t) * (m / t);
t = tmp + 1;
}
printf("%lld\n", ans);
}
}
}
int main()
{
zyt::work();
return 0;
}