【洛谷3224/BZOJ2733】[HNOI2012]永无乡 (Splay启发式合并)

题目:

洛谷3224

分析:

这题一看\(n\leq100000\)的范围就知道可以暴力地用\(O(nlogn)\)数据结构乱搞啊……

每个联通块建一棵Splay树,查询就是Splay查询第k大的模板,建桥的时候就把两个联通块的Splay进行“启发式合并”

本来以为启发式合并是什么高端的东西,tzh神犇给我说就是把小的推倒然后暴力插入到大的里面2333

初始我给每个岛都建了一棵Splay树,合并\(a\), \(b\)两岛 (\(size_a<size_b\)) 时将\(a\)树插入到\(b\)树中,然后删除\(a\)树。合并两联通块同理。注意由于除了并查集祖先的树,该联通块中其他的树都已经被删除,所以要用并查集辅助记录哪个岛(\(b\))“代表”这个联通块

建桥时一定要判断两个点是否已经在同一联通块内,合并空树会RE!!!

我SB啊因为这个调一下午

代码:

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;

namespace zyt
{
	const int N = 100010;
	int n, m, rank[N];
	struct Splay
	{
		struct node
		{
			int val, id, size;
			node *fa, *s[2];
			node(node *const f, const int v, const int i):fa(f), val(v), id(i)
			{
				s[0] = s[1] = NULL;
				size = 1;
			}
		}*head;
		void update(node *rot)
		{
			rot->size = 1;
			if (rot->s[0])
				rot->size += rot->s[0]->size;
			if (rot->s[1])
				rot->size += rot->s[1]->size;
		}
		bool dir(const node *rot)
		{
			return rot == rot->fa->s[1];
		}
		void rotate(node *rot)
		{
			node *f = rot->fa, *ff = f->fa;
			bool d = dir(rot);
			rot->fa = ff;
			if (ff)
				ff->s[dir(f)] = rot;
			else
				head = rot;
			f->s[d] = rot->s[!d];
			if (rot->s[!d])
				rot->s[!d]->fa = f;
			f->fa = rot;
			rot->s[!d] = f;
			update(f);
			update(rot);
		}
		void splay(node *rot, const node *goal = NULL)
		{
			while (rot && rot->fa != goal)
			{
				node *f = rot->fa, *ff = f->fa;
				if (ff)
					if (dir(rot) ^ dir(f))
						rotate(rot), rotate(rot);
					else
						rotate(f), rotate(rot);
				else
					rotate(rot);
			}
		}
		void insert(const int id, const int val)
		{
			node *rot = head;
			if (rot == NULL)
				head = new node(NULL, val, id);
			else
			{
				while (1)
				{
					if (val < rot->val)
						if (rot->s[0])
							rot = rot->s[0];
						else
						{
							rot->s[0] = new node(rot, val, id);
							splay(rot->s[0]);
							break;
						}
					else
						if (rot->s[1])
							rot = rot->s[1];
						else
						{
							rot->s[1] = new node(rot, val, id);
							splay(rot->s[1]);
							break;
						}
				}
			}
		}
		int find_kth(const int k)
		{
			int tmp = k;
			node *rot = head;
			while(1)
			{
				if (!rot)
					return -1;
				if ((!rot->s[0] && tmp == 1) || (rot->s[0] && tmp == rot->s[0]->size + 1))
					return rot->id;
				if (rot->s[0] && tmp <= rot->s[0]->size)
					rot = rot->s[0];
				else
				{
					if (rot->s[0])
						tmp -= rot->s[0]->size;
					tmp--;
					rot = rot->s[1];
				}
			}
		}
		friend void merge(Splay &a, Splay &b);
		friend void del(node *rot, Splay &d);
	}island[N];
	inline void merge(Splay &a, Splay &b)
	{
		if (a.head->size > b.head->size)
			swap(a, b);
		del(a.head, b);
		a.head = NULL;
	}
	void del(Splay::node *rot, Splay &d)
	{
		d.insert(rot->id, rot->val);
		if (rot->s[0])
			del(rot->s[0], d);
		if (rot->s[1])
			del(rot->s[1], d);
		delete rot;
	}
	int p[N];
	int find(const int x)
	{
		return x == p[x] ? x : p[x] = find(p[x]);
	}
	void work()
	{
		scanf("%d%d", &n, &m);
		for (int i = 1; i <= n; i++)
		{
			scanf("%d", &rank[i]);
			p[i] = i;
			island[i].insert(i, rank[i]);
		}
		while (m--)
		{
			int a, b;
			scanf("%d%d", &a, &b);
			int x = find(a), y = find(b);
			if (x == y)
				continue;
			p[x] = y;
			merge(island[x], island[y]);
		}
		int q;
		scanf("%d", &q);
		while (q--)
		{
			char c;
			int a, b;
			do{c = getchar();} while (c != 'B' && c != 'Q');
			scanf("%d%d", &a, &b);
			if (c == 'B')
			{
				int x = find(a), y = find(b);
				if (x == y)
					continue;
				p[x] = y;
				merge(island[x], island[y]);
			}
			else
				printf("%d\n", island[find(a)].find_kth(b));
		}
	}
}
int main()
{
	zyt::work();
	return 0;
}
posted @ 2018-07-10 19:02  Inspector_Javert  阅读(135)  评论(0编辑  收藏  举报