【BZOJ3514】Codechef MARCH14 GERALD07加强版(LCT_主席树)

题目:

BZOJ3514

分析:

看到这题真的是一脸懵逼无从下手,只好膜题解。看到「森林的联通块数 = 点数 - 边数」这一句话就立刻什么都会了 QAQ 。

这题最重要的就是意识到上面那个式子(正确性显然)。那么这个问题就变成了:\([l,r]\) 中最多选出多少条边,使得图中不存在环。根据 Kruskal 的原理,贪心地选就能保证选出的边最多,所以我们不妨假定尽量选编号较大的边。

给每条边 \(i\)\(nxt_i\) ,表示从 \(i\) 开始向后依次插入边,插入到 \(nxt_i\) 这条边时会出现 包含 \(i\) 环(不存在则为无穷大)。即,如果 \(i\)\(nxt_i\) 同时可选,由于尽量选择标号大的边,所以选上 \(nxt_i\) 而把 \(i\) 删掉。\(nxt_i\) 也可理解为会「废掉」\(i\) 的第一条边。那么答案就是满足 \(i\in[l,r]\)\(nxt[i]\notin[l,r]\) 的边数。这是一个二维数点问题,直接用主席树解决即可。

如何 \(O(n)\) 求出 \(nxt_i\) 呢?考虑从小到大加边,当加入边 \(i\) 时,如果出现了环,那么断掉环上最小的边 \(j\) ,则 \(nxt_j=i\) 。这个过程用 LCT 维护。

代码:

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cctype>
using namespace std;

namespace zyt
{
	template<typename T>
	inline bool read(T &x)
	{
		char c;
		bool f = false;
		x = 0;
		do
			c = getchar();
		while (c != EOF && c != '-' && !isdigit(c));
		if (c == EOF)
			return false;
		if (c == '-')
			f = true, c = getchar();
		do
			x = x * 10 + c - '0', c = getchar();
		while (isdigit(c));
		if (f)
			x = -x;
		return true;
	}
	template<typename T>
	inline void write(T x)
	{
		static char buf[20];
		char *pos = buf;
		if (x < 0)
			putchar('-'), x = -x;
		do
			*pos++ = x % 10 + '0';
		while (x /= 10);
		while (pos > buf)
			putchar(*--pos);
	}
	const int N = 2e5 + 10, M = 2e5 + 10, B = 20, P = N + M, INF = 0x3f3f3f3f;
	class Link_Cut_Tree
	{
	private:
		struct nulltag {};
		struct node
		{
			int val, min;
			bool revtag;
			node *fa, *s[2];
			node(nulltag)
				: val(INF), min(INF), revtag(false)
			{
				fa = s[0] = s[1] = this;
			}
			node(const int _val)
				: val(_val), min(_val), revtag(false)
			{
				fa = s[0] = s[1] = null;
			}
		}*pos[P];
		static node *null;
		static void update(node *const rot)
		{
			rot->min = min(rot->val, min(rot->s[0]->min, rot->s[1]->min));
		}
		static void rev(node *const rot)
		{
			swap(rot->s[0], rot->s[1]), rot->revtag ^= 1;
		}
		static void pushdown(node *const rot)
		{
			if (rot->revtag)
			{
				if (rot->s[0] != null)
					rev(rot->s[0]);
				if (rot->s[1] != null)
					rev(rot->s[1]);
				rot->revtag = 0;
			}
		}
		static void pushdown_all(node *const rot)
		{
			if (!isrot(rot))
				pushdown_all(rot->fa);
			pushdown(rot);
		}
		static bool isrot(const node *const rot)
		{
			return rot != rot->fa->s[0] && rot != rot->fa->s[1];
		}
		static bool dir(const node *const rot)
		{
			return rot == rot->fa->s[1];
		}
		static void rotate(node *const rot)
		{
			node *f = rot->fa, *ff = f->fa;
			bool d = dir(rot);
			if (!isrot(f))
				ff->s[dir(f)] = rot;
			rot->fa = ff;
			f->s[d] = rot->s[!d];
			if (rot->s[!d] != null)
				rot->s[!d]->fa = f;
			rot->s[!d] = f;
			f->fa = rot;
			update(f);
		}
		static void splay(node *const rot)
		{
			pushdown_all(rot);
			while (!isrot(rot))
			{
				node *f = rot->fa;
				if (isrot(f))
					rotate(rot);
				else if (dir(f) ^ dir(rot))
					rotate(rot), rotate(rot);
				else
					rotate(f), rotate(rot);
			}
			update(rot);
		}
		static void access(node *rot)
		{
			for (node *last = null; rot != null; last = rot, rot = rot->fa)
				splay(rot), rot->s[1] = last, update(rot);
		}
		static void mkrot(node *const rot)
		{
			access(rot), splay(rot), rev(rot);
		}
		static node *findrot(node *rot)
		{
			access(rot), splay(rot);
			while (rot->s[0] != null)
				rot = rot->s[0];
			return rot;
		}
	public:
		bool connect(const int x, const int y)
		{
			return findrot(pos[x]) == findrot(pos[y]);
		}
		void link(const int x, const int y)
		{
			node *rot1 = pos[x], *rot2 = pos[y];
			mkrot(rot1), splay(rot1), rot1->fa = rot2;
		}
		void cut(const int x, const int y)
		{
			node *rot1 = pos[x], *rot2 = pos[y];
			mkrot(rot1), access(rot2), splay(rot1);
			rot1->s[1] = rot2->fa = null;
			update(rot1);
		}
		int query(const int x, const int y)
		{
			node *rot1 = pos[x], *rot2 = pos[y];
			mkrot(rot1), access(rot2), splay(rot1);
			return rot1->min;
		}
		void init(const int n, const int *const w)
		{
			for (int i = 1; i <= n; i++)
				pos[i] = new node(w[i]);
		}

	}lct;
	typedef Link_Cut_Tree LCT;
	LCT::node *LCT::null = new LCT::node(LCT::nulltag());
	namespace Chairman_Tree
	{
		struct node
		{
			int sum, lt, rt;
		}tree[M * B];
		int cnt;
		void add(int &rot, const int pre, const int lt, const int rt, const int pos, const int x)
		{
			rot = ++cnt;
			tree[rot] = tree[pre];
			tree[rot].sum += x;
			if (lt == rt)
				return;
			int mid = (lt + rt) >> 1;
			if (pos <= mid)
				add(tree[rot].lt, tree[pre].lt, lt, mid, pos, x);
			else
				add(tree[rot].rt, tree[pre].rt, mid + 1, rt, pos, x);
		}
		int query(const int rot1, const int rot2, const int lt, const int rt, const int ls, const int rs)
		{
			if (!rot2 || (ls <= lt && rt <= rs))
				return tree[rot2].sum - tree[rot1].sum;
			int mid = (lt + rt) >> 1;
			if (rs <= mid)
				return query(tree[rot1].lt, tree[rot2].lt, lt, mid, ls, rs);
			else if (ls > mid)
				return query(tree[rot1].rt, tree[rot2].rt, mid + 1, rt, ls, rs);
			else
				return query(tree[rot1].lt, tree[rot2].lt, lt, mid, ls, rs)
					+ query(tree[rot1].rt, tree[rot2].rt, mid + 1, rt, ls, rs);
		}
	}
	typedef pair<int, int> pii;
	int head[M], w[P], n, m, nxt[M];
	pii arr[M];
	int work()
	{
		using namespace Chairman_Tree;
		int lastans = 0, q, type;
		read(n), read(m), read(q), read(type);
		for (int i = 1; i <= n; i++)
			w[i] = INF;
		for (int i = 1; i <= m; i++)
			w[i + n] = i, nxt[i] = m + 1;
		lct.init(n + m, w);
		for (int i = 1; i <= m; i++)
		{
			int a, b;
			read(a), read(b);
			arr[i] = pii(a, b);
			if (a == b)
			{
				nxt[i] = i;
				continue;
			}
			if (lct.connect(a, b))
			{
				int tmp = lct.query(a, b);
				nxt[tmp] = i;
				lct.cut(tmp + n, arr[tmp].first);
				lct.cut(tmp + n, arr[tmp].second);
			}
			lct.link(a, i + n), lct.link(i + n, b);
		}
		for (int i = 1; i <= m; i++)
			add(head[i], head[i - 1], 1, m + 1, nxt[i], 1);
		while (q--)
		{
			int l, r;
			read(l), read(r);
			if (type)
				l ^= lastans, r ^= lastans;
			write(lastans = (n - query(head[l - 1], head[r], 1, m + 1, r + 1, m + 1)));
			putchar('\n');
		}
		return 0;
	}
}
int main()
{
	return zyt::work();
}
posted @ 2019-05-17 16:07  Inspector_Javert  阅读(97)  评论(0编辑  收藏  举报