【洛谷4721】【模板】分治FFT(CDQ分治_NTT)

题目:

洛谷 4721

分析:

我觉得这个 “分治 FFT ” 不能算一种特殊的 FFT ,只是 CDQ 分治里套了个用 FFT (或 NTT)计算的过程,二者是并列关系而不是偏正关系,跟 CDQ 分治套树状数组之类性质差不多吧(所以我也不知道为什么洛谷要把这个作为一个模板)。

言归正传,先看一眼原来的式子:

\[f[i]=\begin{cases}1\ (i=0)\\\sum_{j=1}^{i}f[i-j]g[j]\ \mathrm{otherwise}\end{cases} \]

\(f[i]=\sum f[i-j]g[j]\) 很像一个多项式卷积,只是后面的值要用到前面的值,不能直接卷积。考虑 CDQ 分治计算区间 \([l,r]\) 的一般过程:先递归左区间 \([l,mid]\) ,再计算左区间的值对右区间的值的贡献,最后递归右区间 \((mid,r]\)

如何计算 “左区间的值对右区间的值的贡献” 呢?考虑 \(f[i](l\leq i\leq mid)\) 这一项对 \((mid,r]\) 的贡献:

\[f[i+j]=\sum f[i]g[j] (i\in [l, mid], j\in [0, r-i]) \]

(注意 \(i+j\leq mid\) 的情况已经在递归左区间时计算过,直接忽略掉即可)

设多项式 \(A[i-l]=\begin{cases}f[i](l\leq i \leq mid)\\0(mid<i\leq r)\end{cases}\) (后半部分置 \(0\) 凑够长度),则有:

\[f[l+i+j]=\sum A[i]g[j] (i\in [0, r-l], j\in [0, r-l-i]) \]

写得更清晰一点:

\[f[l+i]=\sum A[j]g[i-j] (i\in [0, r-l], j\in [0, i]) \]

这个直接拿卷积算就好了。

代码:

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cctype>
using namespace std;

namespace zyt
{
	template<typename T>
	inline bool read(T &x)
	{
		char c;
		bool f = false;
		x = 0;
		do
			c = getchar();
		while (c != EOF && c != '-' && !isdigit(c));
		if (c == EOF)
			return false;
		if (c == '-')
			f = true, c = getchar();
		do
			x = x * 10 + c - '0', c = getchar();
		while (isdigit(c));
		if (f)
			x = -x;
		return true;
	}
	template<typename T>
	inline void write(T x)
	{
		static char buf[20];
		char *pos = buf;
		if (x < 0)
			putchar('-'), x = -x;
		do
			*pos++ = x % 10 + '0';
		while (x /= 10);
		while (pos > buf)
			putchar(*--pos);
	}
	typedef long long ll;
	const int N = 1e5 + 10, LEN = N << 2, p = 998244353, g = 3;
	inline int power(int a, int b)
	{
		int ans = 1;
		while (b)
		{
			if(b & 1)
				ans = (ll)ans * a % p;
			a = (ll)a * a % p;
			b >>= 1;
		}
		return ans;
	}
	inline int inv(const int a)
	{
		return power(a, p - 2);
	}
	namespace Polynomial
	{
		int rev[LEN], omega[LEN], winv[LEN];
		void init(const int n, const int lg2)
		{
			int w = power(g, (p - 1) / n), wi = inv(w);
			omega[0] = winv[0] = 1;
			for (int i = 1; i < n; i++)
			{
				omega[i] = (ll)omega[i - 1] * w % p;
				winv[i] = (ll)winv[i - 1] * wi % p;
			}
			for (int i = 0; i < n; i++)
				rev[i] = ((rev[i >> 1] >> 1) | ((i & 1) << (lg2 - 1)));
		}
		void ntt(int *a, const int *w, const int n)
		{
			for (int i = 0; i < n; i++)
				if (i < rev[i])
					swap(a[i], a[rev[i]]);
			for (int l = 1; l < n; l <<= 1)
				for (int i = 0; i < n; i += (l << 1))
					for (int k = 0; k < l; k++)
					{
						int x = a[i + k], y = (ll)w[n / (l << 1) * k] * a[i + l + k] % p;
						a[i + k] = (x + y) % p;
						a[i + l + k] = (x - y + p) % p;
					}
		}
		void mul(const int *a, const int *b, int *c, const int n)
		{
			static int x[LEN], y[LEN];
			int m = 1, lg2 = 0;
			while (m < n + n - 1)
				m <<= 1, ++lg2;
			memcpy(x, a, sizeof(int[n]));
			memset(x + n, 0, sizeof(int[m - n]));
			memcpy(y, b, sizeof(int[n]));
			memset(y + n, 0, sizeof(int[m - n]));
			init(m, lg2);
			ntt(x, omega, m), ntt(y, omega, m);
			for (int i = 0; i < m; i++)
				x[i] = (ll)x[i] * y[i] % p;
			ntt(x, winv, m);
			int invm = inv(m);
			for (int i = 0; i < n; i++)
				c[i] = (ll)x[i] * invm % p;
		}
	}
	int arr[N], ans[N], n;
	void solve(const int l, const int r)
	{
		static int tmp1[N], tmp2[N];
		if (l == r)
			return;
		int mid = (l + r) >> 1;
		solve(l, mid);
		for (int i = l; i <= mid; i++)
			tmp1[i - l] = ans[i];
		for (int i = mid + 1; i <= r; i++)
			tmp1[i - l] = 0;
		Polynomial::mul(arr, tmp1, tmp2, r - l + 1);
		for (int i = mid + 1; i <= r; i++)
			ans[i] = (ans[i] + tmp2[i - l]) % p;
		solve(mid + 1, r);
	}
	int work()
	{
		read(n);
		for (int i = 1; i < n; i++)
			read(arr[i]);
		ans[0] = 1;
		solve(0, n - 1);
		for (int i = 0; i < n; i++)
			write(ans[i]), putchar(' ');
		return 0;
	}
}
int main()
{
	freopen("4721.in", "r", stdin);
	return zyt::work();
}
posted @ 2019-03-14 23:33  Inspector_Javert  阅读(211)  评论(0编辑  收藏  举报