【BZOJ4566_洛谷3181】[HAOI2016]找相同字符(SAM)

自己yy的方法yyyyyyyy着就A了,写篇博客庆祝一下。

题目:

洛谷3181

分析:

SAM(可能是)模板题(不会SAM的同学戳我:【知识总结】后缀自动机的构建)。

\(s1\)建出SAM,用\(s2\)在上面跑。用\(size[i]\)表示结点\(i\)\(Right\)集合大小(直接拓扑排序后DP就行)。既然要求\(s2\)中有多少子串在\(s1\)中出现了,那么用\(f[i]\)表示结点\(i\)对应的所有子串在\(s2\)一共出现了多少次(位置不同算多次)。答案就是\(\sum f[i]\cdot size[i]\)

如何计算\(f[i]\)呢?如果当前匹配过程中走到了\(p\)点,匹配长度为\(len\)。很明显,当前匹配到的是从\(p\)点沿着\(fa\)链到根的路径上对应的长度不大于\(len\)的字符串。它对\(f[p]\)\(len-min[p]+1=len-max[fa[p]]\)的贡献(SAM上\(min[p]-1=max[fa[p]]\)),且对这条路径上任意一点\(q\)\(f[q]\)都有\(max[q]-min[q]+1=max[q]-max[fa[q]]\)的贡献。可以发现此时只有对\(f[p]\)的贡献与\(len\)有关,对其他结点\(q\)的贡献只取决于\(q\)\(fa\)树上的子树的访问次数之和(乘上\(max[q]-max[fa[q]]\))。所以这里只处理对\(f[p]\)的贡献,并记录一下\(p\)被访问了多少次,处理完后一起推上去就行了(类似树上差分)。时间复杂度\(O(n)\)。这里可能讲得不清楚,详见代码qwq。

代码:

还是比较好写的。别问我Auto_Suffix_Chicken是什么东西

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cctype>
#include <string>
#undef i
#undef j
#undef k
#undef true
#undef false
#undef min
#undef max
#undef sort
#undef swap
#undef if
#undef for
#undef while
#undef printf
#undef scanf
#undef putchar
#undef getchar
#define _ 0
using namespace std;

namespace zyt
{
	const int N = 2e5 + 10;
	template<typename T>
	inline bool read(T &x)
	{
		bool f = false;
		char c;
		x = 0;
		do
			c = getchar();
		while (c != EOF && c != '-' && !isdigit(c));
		if (c == EOF)
			return false;
		if (c == '-')
			f = true, c = getchar();
		do
			x = x * 10 + c - '0', c = getchar();
		while (isdigit(c));
		if (f)
			x = -x;
		return true;
	}
	inline bool read(string &s)
	{
		static char buf[N];
		if (scanf("%s", buf) == -1)
			return false;
		s = buf;
		return true;
	}
	template<typename T>
	inline void write(T x)
	{
		static char buf[20];
		char *pos = buf;
		if (x < 0)
			putchar('-'), x = -x;
		do
			*pos++ = x % 10 + '0';
		while (x /= 10);
		while (pos > buf)
			putchar(*--pos);
	}
	const int CH = 26;
	typedef long long ll;
	string s1, s2;
	namespace Auto_Suffix_Chicken
	{
		struct node
		{
			int size, max, fa, s[CH];
		}tree[N << 1];
		int len, cnt, last;
		inline void init()
		{
			cnt = last = 1;
		}
		inline int ctoi(const char c)
		{
			return c - 'a';
		}
		void insert(const char c)
		{
			int x = ctoi(c), np = ++cnt, p = last;
			tree[np].max = tree[p].max + 1;
			tree[np].size = 1;
			while (p && !tree[p].s[x])
				tree[p].s[x] = np, p = tree[p].fa;
			if (!p)
				tree[np].fa = 1;
			else
			{
				int q = tree[p].s[x];
				if (tree[p].max + 1 == tree[q].max)
					tree[np].fa = q;
				else
				{
					int nq = ++cnt;
					memcpy(tree[nq].s, tree[q].s, sizeof(char[CH]));
					tree[nq].max = tree[p].max + 1;
					tree[nq].fa = tree[q].fa;
					tree[np].fa = tree[q].fa = nq;
					while (p && tree[p].s[x] == q)
						tree[p].s[x] = nq, p = tree[p].fa;
				}
			}
			last = np;
		}
		int buf[N << 1];
		void radix_sort()
		{
			static int count[N];
			memset(count, 0, sizeof(int[len + 1]));
			for (int i = 1; i <= cnt; i++)
				++count[tree[i].max];
			for (int i = 1; i <= len; i++)
				count[i] += count[i - 1];
			for (int i = cnt; i > 0; i--)
				buf[count[tree[i].max]--] = i;
		}
		void build(const string &s)
		{
			init();
			len = s.size();
			for (int i = 0; i < s.size(); i++)
				insert(s[i]);
			radix_sort();
			for (int i = cnt; i > 0; i--)
				tree[tree[buf[i]].fa].size += tree[buf[i]].size;
		}
		inline ll query(const string &s)
		{
			static ll f[N << 1];
			static int num[N << 1];
			memset(f, 0, sizeof(ll[cnt + 1]));
			memset(num, 0, sizeof(int[cnt + 1]));
			ll ans = 0;
			int now = 1, len = 0;
			for (int i = 0; i < s.size(); i++)
			{
				int x = ctoi(s[i]);
				while (now && !tree[now].s[x])
					now = tree[now].fa, len = tree[now].max;
				if (now)
					now = tree[now].s[x], ++len;
				else
					now = 1, len = 0;
				f[now] += (len - tree[tree[now].fa].max), ++num[now];
			}
			radix_sort();
			for (int i = cnt; i > 0; i--)
			{
				int tmp = tree[buf[i]].fa;
				f[tmp] += (ll)num[buf[i]] * (tree[tmp].max - tree[tree[tmp].fa].max);
				num[tmp] += num[buf[i]];
			}
			for (int i = 2; i <= cnt; i++)
				ans += f[i] * tree[i].size;
			return ans;
		}
	}
	int work()
	{
		using namespace Auto_Suffix_Chicken;
		read(s1), read(s2);
		build(s1);
		write(query(s2));
		return (0^_^0);
	}
}
int main()
{
	return zyt::work();
}
posted @ 2019-01-11 14:50  Inspector_Javert  阅读(155)  评论(0编辑  收藏  举报