【BZOJ3205_洛谷3638】[APIO2013]机器人(动态规划)

题目:

洛谷3638

分析:

卡了一天的神题……(OrzJumpmelon)

首先预处理出从点\(p\)\(d\)方向出发最终能到达的点\(nxt[p][d]\)。这个可以直接记忆化搜索解决。如果出现环说明不能向这个方向出发,设为\(-1\)

struct point
{
    int x, y;
    point(const int _x = 0, const int _y = 0)
        : x(_x), y(_y) {}
};
inline bool check(const point &p)
{
    return p.x >= 0 && p.x < h && p.y >= 0 && p.y < w;
}
inline int ptoi(const point &p)
{
    return p.x * w + p.y;
}
bool vis[P][DIR], insta[P][DIR];
int dfs(const point &u, const int &d)
{
    int id = ptoi(u);
    if (vis[id][d])
        return nxt[id][d];
    if (insta[id][d])
    {
        vis[id][d] = true;
        return nxt[id][d] = -1;
    }
    int dd = d;
    if (map[id] == LEFT)
        dd = (dd + 1) & 3;
    if (map[id] == RIGHT)
        dd = (dd + 3) & 3;
    point v = point(u.x + dx[dd], u.y + dy[dd]);
    if (!check(v) || map[ptoi(v)] == WALL)
    {
        vis[id][d] = true;
        return nxt[id][d] = id;
    }
    else
    {
        insta[id][d] = true;
        nxt[id][d] = dfs(v, dd);
        insta[id][d] = false;
        vis[id][d] = true;
        return nxt[id][d];
    }
}

然后考虑用\(dp[i][j][u]\)表示令编号为\([i,j]\)的复合机器人在\(u\)点的最少步数,最终答案就是\(min(dp[0][n-1][u])\)。有两种转移方式:

1.把\([i,k]\)\((k,j]\)两个机器人在\(p\)点拼起来,即:

\[dp[i][j][u]=min(dp[i][k][u]+dp[k+1][j][u]) \]

2.把\([i,j]\)机器人推到\(u\)点,即(其中\(v\)能一步走到\(u\)即存在满足\(nxt[v][d]=u\)\(d\)):

\[dp[i][j][u]=dp[i][j][v]+1 \]

第一种直接区间DP即可。第二种存在循环更新,但是长得很像最短路……

于是我码了Dijkstra,卡常卡到死也没卡过去,还借此机会跟Jumpmelon谝了一天qwq

下面介绍一下Jumpmelon给我讲的优化:开两个队列,第一个队列是一开始的点,按照\(dis\)排好序(\(dis[u]\)表示\(dp[i][j][u]\),下同);第二个队列是已经更新,等待用来更新别的点的队列,初始为空。每次将两个队列队首中\(dis\)较小的一个取出来(相当于Dijkstra的堆顶)来松弛其他点,这样复杂度是\(O(n+m)\)的,成功去掉堆的\(\log m\)。为什么这样是对的呢?

注意到所有边权都是\(1\),于是点\(v\)被更新时第二个队列的队尾(如果存在)的\(dis\)一定不会大于\(dis[v]\),所以直接把\(v\)插到队尾不会影响第二个队列的有序性。原因如下。

考虑反证。假设之前第二个队列是有序的,在某一次更新后变得无序了。设用于更新的点是\(u\),被更新的点是\(v\),更新前第二个队列的队尾为\(t\),满足\(dis[v]=dis[u]+1\)\(dis[t]>dis[v]\)。由于边权都是\(1\),那么曾用于更新\(t\)的点\(p\)满足\(dis[p]=dis[t]-1\geq dis[v]>dis[u]\)。既然\(dis[u]<dis[p]\),由于之前两个队列都是有序的,且每次是取出两队列队首的较小值更新,那么\(u\)显然应该在\(p\)之前被取出,矛盾。所以这种情况不存在。既然能保持两个队列的有序性,那么就保证了每次取出\(dis\)最小的点,也就不需要堆了。(没上文化课,表达能力为\(0\),自己都觉得佶屈聱牙跟个T嘴z子z一样。感性理解就好)。

代码:

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cctype>
#include <queue>
#include <functional>
#include <vector>
#undef i
#undef j
#undef k
#undef true
#undef false
#undef min
#undef max
#undef sort
#undef swap
#undef if
#undef while
#undef for
#undef printf
#undef scanf
#undef putchar
#undef getchar
#define _ 0
using namespace std;

namespace zyt
{
	template<typename T>
	inline bool read(T &x)
	{
		char c;
		bool f = false;
		x = 0;
		do
			c = getchar();
		while (c != EOF && c != '-' && !isdigit(c));
		if (c == EOF)
			return false;
		if (c == '-')
			f = true, c = getchar();
		do
			x = x * 10 + c - '0', c = getchar();
		while (isdigit(c));
		if (f)
			x = -x;
		return true;
	}
	inline bool read(char &c)
	{
		do
			c = getchar();
		while (c != EOF && !isgraph(c));
		return c != EOF;
	}
	template<typename T>
	inline void write(T x)
	{
		static char buf[20];
		char *pos = buf;
		if (x < 0)
			putchar('-'), x = -x;
		do
			*pos++ = x % 10 + '0';
		while (x /= 10);
		while (pos > buf)
			putchar(*--pos);
	}
	const int W = 5e2, P = W * W, N = 9, DIR = 4, INF = 0x3f3f3f3f, B = 18;
	const int U = 0, L = 1, D = 2, R = 3, WALL = N, LEFT = N + 1, RIGHT = N + 2, BLANK = N + 3;
	const int dx[DIR] = {-1, 0, 1, 0};
	const int dy[DIR] = {0, -1, 0, 1};
	int n, w, h, p, nxt[P][DIR], map[P], dp[N][N][P];
	struct point
	{
		int x, y;
		point(const int _x = 0, const int _y = 0)
			: x(_x), y(_y) {}
	};
	inline bool check(const point &p)
	{
		return p.x >= 0 && p.x < h && p.y >= 0 && p.y < w;
	}
	inline int ptoi(const point &p)
	{
		return p.x * w + p.y;
	}
	bool vis[P][DIR], insta[P][DIR];
	int dfs(const point &u, const int &d)
	{
		int id = ptoi(u);
		if (vis[id][d])
			return nxt[id][d];
		if (insta[id][d])
		{
			vis[id][d] = true;
			return nxt[id][d] = -1;
		}
		int dd = d;
		if (map[id] == LEFT)
			dd = (dd + 1) & 3;
		if (map[id] == RIGHT)
			dd = (dd + 3) & 3;
		point v = point(u.x + dx[dd], u.y + dy[dd]);
		if (!check(v) || map[ptoi(v)] == WALL)
		{
			vis[id][d] = true;
			return nxt[id][d] = id;
		}
		else
		{
			insta[id][d] = true;
			nxt[id][d] = dfs(v, dd);
			insta[id][d] = false;
			vis[id][d] = true;
			return nxt[id][d];
		}
	}
	void Shortest_Path(const int l, const int r)
	{
		typedef pair<int, int> pii;
		static pii tmp[P];
		static bool vis[P];
		static queue<int> q1, q2;
		while (!q1.empty())
			q1.pop();
		while (!q2.empty())
			q2.pop();
		memset(vis, 0, sizeof(bool[p]));
		int *dis = dp[l][r], cnt = 0;
		for (int i = 0; i < p; i++)
			if (map[i] != WALL && dis[i] < INF)
				tmp[cnt++] = make_pair(dis[i], i), vis[i] = true;
		sort(tmp, tmp + cnt);
		for (int i = 0; i < cnt; i++)
			q1.push(tmp[i].second);
		while (!q1.empty() || !q2.empty())
		{
			int u = ((q1.empty() || (!q2.empty() && dis[q1.front()] > dis[q2.front()])) ? q2.front() : q1.front());
			if (!q1.empty() && u == q1.front())
				q1.pop();
			else
				q2.pop();
			vis[u] = false;
			for (int i = 0; i < DIR; i++)
			{
				int v = nxt[u][i];
				if (~v && dis[v] > dis[u] + 1)
				{
					dis[v] = dis[u] + 1;
					if (!vis[v])
						q2.push(v), vis[v] = true;
				}
			}
		}
	}
	int work()
	{
		read(n), read(w), read(h);
		p = w * h;
		for (int i = 0; i < n; i++)
			for (int j = i; j < n; j++)
				memset(dp[i][j], INF, sizeof(int[p]));
		for (int i = 0; i < p; i++)
		{
			char c;
			read(c);
			if (isdigit(c))
			{
				map[i] = c - '1';
				dp[map[i]][map[i]][i] = 0;
			}
			else if (c == '.')
				map[i] = BLANK;
			else if (c == 'x')
				map[i] = WALL;
			else if (c == 'A')
				map[i] = LEFT;
			else
				map[i] = RIGHT;
			}
		for (int i = 0; i < h; i++)
			for (int j = 0; j < w; j++)
			{
				int id = ptoi(point(i, j));
				if (map[id] != WALL)
					for (int d = 0; d < DIR; d++)
						nxt[id][d] = dfs(point(i, j), d);
			}
		for (int l = 1; l <= n; l++)
			for (int i = 0; i + l - 1 < n; i++)
			{
				int j = i + l - 1;
				for (int u = 0; u < p; u++)
					if (map[u] != WALL)
						for (int k = i; k < j; k++)
							dp[i][j][u] = min(dp[i][j][u], dp[i][k][u] + dp[k + 1][j][u]);
				Shortest_Path(i, j);
			}
		int ans = INF;
		for (int i = 0; i < p; i++)
			ans = min(ans, dp[0][n - 1][i]);
		if (ans == INF)
			write(-1);
		else
			write(ans);
		return (0^_^0);
	}
}
int main()
{
	return zyt::work();
}
posted @ 2019-01-11 14:05  Inspector_Javert  阅读(221)  评论(0编辑  收藏  举报