【BZOJ4241】历史研究(回滚莫队)

题目:

BZOJ4241

分析:

本校某些julao乱膜的时候发明了个“回滚邹队”,大概意思就是某个姓邹的太菜了进不了省队回滚去文化课

回滚莫队裸题qwq(话说这个名字是不是莫队本人起的啊这么萌zui

首先看到题询问区间信息+没强制在线,妥妥的莫队。然而朴素的莫队(开个桶记每种事件当前的重要度,用set或者堆之类维护一下答案)要\(O(n\sqrt n \log n)\),直接T了……

兔崽子给我说有一种神奇的分块做法,然而我太菜了还没写,先挖个坑以后再补。

然后我去网上orz题解,看到一种叫“回滚莫队”的神奇的东西。可以发现,朴素莫队的问题在于区间变长的时候可以\(O(1)\)更新答案,但是为了维护区间变短必须要套个\(\log n\)的数据结构。所以,如果不存在区间变短的情况,就可以直接\(O(1)\)更新答案,总复杂度\(O(n\sqrt n)\)了。

考虑左端点在同一块中的所有询问,它们的右端点是单调非降的。对于左右端点在同一块中的询问,直接暴力查询即可。否则,设左端点所在块的下一块开头为\(pos\),用一个指针\(r\)往右扫,统计\([pos,r]\)的答案。此时还有\([l,pos)\)的答案没有统计。对于每个询问,暴力\(O(\sqrt n)\)统计这部分答案,最后对两部分答案取\(max\)即可。具体参见代码。

代码:

朴素莫队(TLE):

(一开始离散化写炸了WA了几发……菜死了)

#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
#include <queue>
#include <cmath>
#define _ 0
using namespace std;

namespace zyt
{
	template<typename T>
	inline bool read(T &x)
	{
		char c;
		bool f = false;
		x = 0;
		do
			c = getchar();
		while (c != EOF && c != '-' && !isdigit(c));
		if (c == EOF)
			return false;
		if (c == '-')
			f = true, c = getchar();
		do
			x = x * 10 + c - '0', c = getchar();
		while (isdigit(c));
		if (f)
			x = -x;
		return true;
	}
	template<typename T>
	inline void write(T x)
	{
		char buf[20];
		char *pos = buf;
		if (x < 0)
			putchar('-'), x = -x;
		do
			*pos++ = x % 10 + '0';
		while (x /= 10);
		while (pos > buf)
			putchar(*--pos);	
	}
	typedef long long ll;
	const int N = 1e5 + 10, Q = 1e5 + 10;
	int n, q, block, belong[N], arr[N], tmp[N];
	ll ans[N];
	struct _ask
	{
		int l, r, id;
		bool operator < (const _ask &b) const
		{
			return belong[l] == belong[b.l] ? r < b.r : belong[l] < belong[b.l];
		}
	}ask[Q];
	namespace Mo_Algorithm
	{
		priority_queue<ll> pq, del;
		ll num[N];
		void update(const int pos, const int x)
		{
			del.push(num[pos]);
			num[pos] += (ll)tmp[pos] * x;
			pq.push(num[pos]);
			while (!del.empty() && pq.top() == del.top())
				pq.pop(), del.pop();
		}
		void solve(const int maxx)
		{
			int l = 1, r = 1;
			for (int i = 1; i <= maxx; i++)
				pq.push(0);
			update(arr[1], 1);
			for (int i = 1; i <= q; i++)
			{
				while (l < ask[i].l)
					update(arr[l++], -1);
				while (l > ask[i].l)
					update(arr[--l], 1);
				while (r < ask[i].r)
					update(arr[++r], 1);
				while (r > ask[i].r)
					update(arr[r--], -1);
				ans[ask[i].id] = pq.top();
			}
		}
	}
	int work()
	{
		read(n), read(q);
		block = pow(n, 0.5);
		for (int i = 1; i <= n; i++)
		{
			read(arr[i]), tmp[i] = arr[i];
			belong[i] = (i - 1) / block + 1;
		}
		sort(tmp + 1, tmp + n + 1);
		int cnt = unique(tmp + 1, tmp + n + 1) - tmp;
		for (int i = 1; i <= n; i++)
			arr[i] = lower_bound(tmp + 1, tmp + cnt, arr[i]) - tmp;
		for (int i = 1; i <= q; i++)
		{
			read(ask[i].l), read(ask[i].r);
			ask[i].id = i;
		}
		sort(ask + 1, ask + q + 1);
		Mo_Algorithm::solve(cnt);
		for (int i = 1; i <= q; i++)
			write(ans[i]), putchar('\n');
		return (0^_^0);
	}
}
int main()
{
	return zyt::work();	
}

回滚莫队(AC):

#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
#include <queue>
#include <cmath>
#define _ 0
using namespace std;

namespace zyt
{
	template<typename T>
	inline bool read(T &x)
	{
		char c;
		bool f = false;
		x = 0;
		do
			c = getchar();
		while (c != EOF && c != '-' && !isdigit(c));
		if (c == EOF)
			return false;
		if (c == '-')
			f = true, c = getchar();
		do
			x = x * 10 + c - '0', c = getchar();
		while (isdigit(c));
		if (f)
			x = -x;
		return true;
	}
	template<typename T>
	inline void write(T x)
	{
		char buf[20];
		char *pos = buf;
		if (x < 0)
			putchar('-'), x = -x;
		do
			*pos++ = x % 10 + '0';
		while (x /= 10);
		while (pos > buf)
			putchar(*--pos);	
	}
	typedef long long ll;
	const int N = 1e5 + 10, Q = 1e5 + 10;
	int n, q, block, belong[N], arr[N], tmp[N];
	ll ans[N];
	struct _ask
	{
		int l, r, id;
		bool operator < (const _ask &b) const
		{
			return belong[l] == belong[b.l] ? r < b.r : belong[l] < belong[b.l];
		}
	}ask[Q];
	inline int begin(const int a)
	{
		return (a - 1) * block + 1;
	}
	namespace Mo_Algorithm
	{
		ll solve_small(const int l, const int r)
		{
			static ll num[N];
			ll ans = 0;
			for (int i = l; i <= r; i++)
				ans = max(ans, num[arr[i]] += tmp[arr[i]]);
			for (int i = l; i <= r; i++)
				num[arr[i]] = 0;
			return ans;
		}
		void solve(const int maxx)
		{
			static ll num[N];
			ll now = 0;
			int l, r, lbegin;
			for (int i = 1; i <= q; i++)
			{
				if (belong[ask[i].l] != belong[ask[i - 1].l])
				{
					memset(num, 0, sizeof(ll[maxx + 1]));
					lbegin = begin(belong[ask[i].l] + 1), l = lbegin, r = lbegin - 1;
					now = 0;
				}
				if (belong[ask[i].l] == belong[ask[i].r])
					ans[ask[i].id] = solve_small(ask[i].l, ask[i].r);
				else
				{
					while (r < ask[i].r)
					{
						++r;
						now = max(now, num[arr[r]] += tmp[arr[r]]);
					}
					ll bck = now;
					while (l > ask[i].l)
					{
						--l;
						now = max(now, num[arr[l]] += tmp[arr[l]]);
					}
					ans[ask[i].id] = now;
					while (l < lbegin)
					{
						num[arr[l]] -= tmp[arr[l]];
						++l;
					}
					now = bck;
				}
			}
		}
	}
	int work()
	{
		read(n), read(q);
		block = pow(n, 0.5);
		for (int i = 1; i <= n; i++)
		{
			read(arr[i]), tmp[i] = arr[i];
			belong[i] = (i - 1) / block + 1;
		}
		sort(tmp + 1, tmp + n + 1);
		int cnt = unique(tmp + 1, tmp + n + 1) - tmp;
		for (int i = 1; i <= n; i++)
			arr[i] = lower_bound(tmp + 1, tmp + cnt, arr[i]) - tmp;
		for (int i = 1; i <= q; i++)
		{
			read(ask[i].l), read(ask[i].r);
			ask[i].id = i;
		}
		sort(ask + 1, ask + q + 1);
		Mo_Algorithm::solve(cnt);
		for (int i = 1; i <= q; i++)
			write(ans[i]), putchar('\n');
		return (0^_^0);
	}
}
int main()
{
	return zyt::work();	
}
posted @ 2018-12-21 22:22  Inspector_Javert  阅读(163)  评论(0编辑  收藏  举报