【BZOJ3294/洛谷3158】[CQOI2011]放棋子(组合数+DP)
题目:
分析:
某OIer兔崽子的此题代码中的三个函数名:dfs、ddfs、dddfs(充满毒瘤的气息
显然,行与行之间、列与列之间是互相独立的。考虑背包,用\(f[k][i][j]\)表示用前\(k\)种颜色占了\(i\)行\(j\)列的方案数,\(g[i][j]\)表示用颜色\(k\)占据\(i\)行\(j\)列的方案数,\(c[i]\)表示颜色为\(i\)的棋子数,就有如下方程:
\[f[k][i][j]=\sum _{a=0}^i \sum_{b=0}^j f[k-1][i-a][j-b]\times g[a][b]\times C_{n-(i-a)}^a\times C_{m-(j-b)}^b(ab\geq c[i])
\]
\(g[i][j]\)在算的时候注意要减去有空行或空列的情况(枚举有多少行、列不是空的)。注意要\(a=i\)且\(b=j\)的情况要跳过:
\[g[i][j]=C_{ij}^{c[k]}-\sum_{a=0}^i \sum_{b=0}^j g[a][b]\times C_i^a \times C_j^b(ij\geq c[k])
\]
代码:
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cctype>
using namespace std;
namespace zyt
{
template<typename T>
inline void read(T &x)
{
char c;
bool f = false;
x = 0;
do
c = getchar();
while (c != '-' && !isdigit(c));
if (c == '-')
f = true, c = getchar();
do
x = x * 10 + c - '0', c = getchar();
while (isdigit(c));
if (f)
x = -x;
}
template<typename T>
inline void write(T x)
{
static char buf[20];
char *pos = buf;
if (x < 0)
putchar('-'), x = -x;
do
*pos++ = x % 10 + '0';
while (x /= 10);
while (pos > buf)
putchar(*--pos);
}
typedef long long ll;
const int N = 40, T = 20, p = 1e9 + 9;
int n, m, c, arr[T], C[N * N][N * N], f[T][N][N], g[N][N];
void init()
{
for (int i = 0; i < N * N; i++)
{
C[i][0] = 1;
for (int j = 1; j <= i; j++)
C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % p;
}
}
int work()
{
init();
read(n), read(m), read(c);
for (int i = 1; i <= c; i++)
read(arr[i]);
f[0][0][0] = 1;
for (int k = 1; k <= c; k++)
{
memset(g, 0, sizeof(g));
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
{
if (i * j >= arr[k])
{
g[i][j] = C[i * j][arr[k]];
for (int a = 0; a <= i; a++)
for (int b = 0; b <= j; b++)
{
if (a != i || b != j)
g[i][j] = (g[i][j] - (ll)g[a][b] *
C[i][a] % p * C[j][b] % p + p) % p;
}
}
}
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
for (int a = 1; a <= i; a++)
for (int b = 1; b <= j; b++)
if (a * b >= arr[k])
f[k][i][j] = (f[k][i][j] +
(ll)f[k - 1][i - a][j - b] * g[a][b] % p *
C[n - (i - a)][a] % p * C[m - (j - b)][b]) % p;
}
int ans = 0;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
ans = (ans + f[c][i][j]) % p;
write(ans);
return 0;
}
}
int main()
{
return zyt::work();
}